\begin{table}%t8 \caption{\label{table.avalues}Transition probabilities ($A_{ji}$, units~s$^{-1}$) calculated with the target (Table~\ref{basis_scale}).}\vspace*{-2.2mm} %\centering \par \begin{tabular}{rrlrrlrrlrrlrrl} \hline\hline\noalign{\smallskip} $j$&$i$&$A_{ji}$ &$j$&$i$&$A_{ji}$ &$j$&$i$&$A_{ji}$ &$j$&$i$&$A_{ji}$ &$j$&$i$&$A_{ji}$ \\[2pt] \hline 2& 1&1.396(\phantom{$-$}1) & 8& 3&5.131(\phantom{$-$}7) &14& 3&3.348(10) &18&12&2.082(\phantom{$-$}1) &23& 3& 1.269(10) \\ 3& 1&6.369($-$3) & 8& 4&1.084(\phantom{$-$}7) &14& 4&6.486(\phantom{$-$}8) &18&13&2.204($-$1) &23& 4& 1.420(\phantom{$-$}9) \\ 3& 2&9.753(\phantom{$-$}0) & 9& 3&1.330(\phantom{$-$}9) &14& 5&4.137(\phantom{$-$}8) &18&15&1.591($-$4) &23& 5& 1.183(\phantom{$-$}7) \\ 4& 1&3.099($-$3) & 9& 4&9.857(\phantom{$-$}7) &15& 2&1.168(\phantom{$-$}8) &18&17&1.907(\phantom{$-$}1) &24& 3& 6.461(10) \\ 4& 2&6.976(\phantom{$-$}1) &10& 2&4.342(\phantom{$-$}9) &15& 3&1.532(\phantom{$-$}8) &19& 2&1.789(10) &24& 4& 2.405(\phantom{$-$}9) \\ 4& 3&8.414(\phantom{$-$}1) &11& 1&1.309(\phantom{$-$}9) &15& 4&3.534(\phantom{$-$}8) &19& 3&1.808(10) &25& 2& 2.384(10) \\ 5& 2&1.062(\phantom{$-$}3) &11& 2&1.993(\phantom{$-$}9) &16& 1&9.499(\phantom{$-$}8) &19& 4&1.589(10) &25& 3& 3.364(10) \\ 5& 3&4.360(\phantom{$-$}0) &11& 3&9.593(\phantom{$-$}8) &16& 2&5.280(\phantom{$-$}9) &20& 1&4.614(10) &25& 4& 6.628(\phantom{$-$}9) \\ 5& 4&7.614(\phantom{$-$}0) &11& 4&5.629(\phantom{$-$}7) &16& 3&1.078(\phantom{$-$}9) &20& 2&2.667(\phantom{$-$}8) &26& 3& 3.427(\phantom{$-$}9) \\ 6& 2&5.394(\phantom{$-$}6) &11& 5&2.285(\phantom{$-$}7) &16& 4&2.967(10) &20& 3&7.082(\phantom{$-$}9) &26& 4& 6.852(10) \\ 6& 3&8.800(\phantom{$-$}6) &12& 2&4.430(\phantom{$-$}8) &16& 5&4.243(\phantom{$-$}9) &20& 4&7.986(\phantom{$-$}8) &27& 1& 3.527(\phantom{$-$}8) \\ 6& 4&2.370(\phantom{$-$}5) &12& 3&3.458(\phantom{$-$}9) &17& 3&3.358(\phantom{$-$}8) &20& 5&5.201(\phantom{$-$}7) &27& 2& 1.481(\phantom{$-$}8) \\ 7& 1&1.365(\phantom{$-$}9) &12& 4&5.306(\phantom{$-$}6) &17& 4&2.161(\phantom{$-$}7) &21& 2&2.039(10) &27& 3& 5.872(\phantom{$-$}4) \\ 7& 2&3.551(\phantom{$-$}8) &13& 2&7.750(\phantom{$-$}7) &18& 3&2.598(\phantom{$-$}1) &21& 3&8.821(\phantom{$-$}7) &27& 4& 1.235(\phantom{$-$}8) \\ 7& 3&1.306(\phantom{$-$}7) &13& 3&1.042(\phantom{$-$}8) &18& 4&2.256(\phantom{$-$}1) &21& 4&3.649(10) &27& 5& 5.636(10) \\ 7& 4&2.885(\phantom{$-$}7) &13& 4&5.464(\phantom{$-$}9) &18& 6&4.352(\phantom{$-$}0) &22& 2&4.659(10) & 0& 0& 0.000(\phantom{$-$}0) \\ 7& 5&2.677(\phantom{$-$}6) &14& 1&6.878(\phantom{$-$}9) &18& 8&1.111(\phantom{$-$}1) &23& 1&8.189(\phantom{$-$}9) & 0& 0& 0.000(\phantom{$-$}0) \\ 8& 2&1.562(\phantom{$-$}9) &14& 2&1.705(10) &18& 9&1.424(\phantom{$-$}1) &23& 2&4.047(10) & 0& 0& 0.000(\phantom{$-$}0) \\ \hline \end{tabular} \vspace*{-1.5mm} \tablefoot{ The indices ($j$,~$i$) correspond to the levels as shown in Table~\ref{targetlevels}.} \end{table}