\begin{table}%t5 \caption{\label{T5}Quasi-periodic decomposition of the resonant angle $\theta = 2 \lambda_b - \lambda_c - \varpi_2^*$ for an integration over 100~kyr of the orbital solution in Table~\ref{T2}.} %\centering \begin{tabular}{rrrrrrrr} \hline\hline \noalign{\smallskip} \multicolumn{5}{c}{Combination} & $\nu_i$ & $A_i$ & $\phi_i$ \\ $n_b$ & $n_c$ & $g_2$&$g_3$& $l_\theta$ & (deg/yr) & (deg) & (deg) \\ \hline 0 & 0 & 0 & 0 & 1 & 245.9180 & 1.810 & --48.681 \\ 1 & 1 & --2 & 0 & 0 & 6586.5572 & 0.567 & 96.286 \\ 0 & 1 & --1 & 0 & 0 & 2195.5191 & 0.569 & 32.095 \\ 0 & 0 & --1 & 1 & 0 & 41.7516 & 0.411 & --94.109 \\ 1 & 0 & --1 & 0 & 0 & 4391.0382 & 0.255 & --25.809 \\ 2 & 1 & --3 & 0 & 0 & 10977.5954 & 0.156 & --19.523 \\ 0 & 0 & 1 & -1 & 1 & 204.1664 & 0.120 & --44.572 \\ \hline \end{tabular} \tablefoot{We have $\theta = \sum_{i=1}^N A_i \cos(\nu_i~ t + \phi_i)$. We only provide the first 7~largest terms that are identified as integer combinations of the fundamental frequencies given in Table~\ref{T4}. } \label{Tj5}\vspace{-2mm} \end{table}