\begin{table}%t1 \caption{\label{table 1}Rate coefficients for rotational de-excitation of CH$^{+}$ in collisions with $^{4}$He.} %\centering \small \begin{tabular}{llllllllll} \hline\hline \noalign{\smallskip} & & \multicolumn{8}{c}{Rate coefficients\tablefootmark{a,} \tablefootmark{b} for $T$ [K] }\\ $j$ & $j'$ & 0.1 & 1 & 10 & 30 & 50 & 80 & 100 & 200 \\ \hline 1 & 0 & $2.9909(11)$ & $3.2579(11)$ & $6.4569(11)$ & $7.6433(11)$ & $7.8618(11)$ & $8.2977(11)$ & $8.5986(11)$ & $9.6190(11)$ \\ 1 & 1 & $1.0228(9)$ & $1.6611(9)$ & $2.2305(9)$ & $2.4917(9)$ & $2.6952(9)$ & $2.9220(9)$ & $3.0418(9)$ & $3.4826(9)$ \\ 2 & 0 & $4.7576(11)$ & $3.5955(11)$ & $3.2011(11)$ & $3.8895(11)$ & $4.3619(11)$ & $4.8028(11)$ & $4.8006(11)$ & $5.4081(11)$ \\ 2 & 1 & $1.2341(10)$ & $1.4211(10)$ & $1.0617(10)$ & $9.4958(11)$ & $9.0823(11)$ & $8.8168(11)$ & $8.8187(11)$ & $9.5990(11)$ \\ 2 & 2 & $1.3221(9)$ & $1.6164(9)$ & $2.2047(9)$ & $2.3876(9)$ & $2.4671(9)$ & $2.5955(9)$ & $2.6826(9)$ & $3.0778(9)$ \\ 3 & 0 & $1.6271(11)$ & $1.3521(11)$ & $9.1738(12)$ & $1.0434(11)$ & $1.1899(11)$ & $1.3527(11)$ & $1.4372(11)$ & $1.7025(11)$ \\ 3 & 1 & $1.0872(10)$ & $8.0492(11)$ & $5.9896(11)$ & $6.5757(11)$ & $6.9659(11)$ & $7.3335(11)$ & $7.5183(11)$ & $8.2536(11)$ \\ 3 & 2 & $7.7290(11)$ & $6.6780(11)$ & $5.8912(11)$ & $5.3892(11)$ & $5.2913(11)$ & $5.3156(11)$ & $5.3962(11)$ & $6.1452(11)$ \\ % \hline 3 & 3 & $9.1119(10)$ & $1.6179(9)$ & $2.2664(9)$ & $2.4626(9)$ & $2.4933(9)$ & $2.5392(9)$ & $2.5829(9)$ & $2.8559(9)$ \\ 4 & 0 & $2.7758(11)$ & $1.8590(11)$ & $1.0869(11)$ & $8.9582(12)$ & $8.3907(12)$ & $8.0476(12)$ & $7.9900(12)$ & $8.7148(12)$ \\ % \hline 4 & 1 & $2.4277(11)$ & $2.0693(11)$ & $1.4840(11)$ & $1.3079(11)$ & $1.2960(11)$ & $1.3300(11)$ & $1.3641(11)$ & $1.5640(11)$ \\ % \hline 4 & 2 & $1.8148(10)$ & $1.3469(10)$ & $9.6207(11)$ & $8.8627(11)$ & $8.7076(11)$ & $8.7218(11)$ & $8.8080(11)$ & $9.5491(11)$ \\ % \hline 4 & 3 & $3.4315(11)$ & $3.6543(11)$ & $2.8561(11)$ & $2.6709(11)$ & $2.6826(11)$ & $2.7736(11)$ & $2.8641(11)$ & $5.5256(11)$ \\ 4 & 4 & $8.0493(10)$ & $1.5822(9)$ & $2.2753(9)$ & $2.5078(9)$ & $2.5444(9)$ & $2.5704(9)$ & $2.5941(9)$ & $2.7618(9)$ \\ % \hline 5 & 0 & $2.0510(12)$ & $1.5094(12)$ & $9.3464(13)$ & $8.1404(13)$ & $8.3837(13)$ & $9.0073(13)$ & $9.4903(13)$ & $1.2577(12)$ \\ % \hline 5 & 1& $6.1265(11)$ & $4.2828(11)$ & $2.5900(11)$ & $2.1286(11)$ & $2.0275(11)$ & $1.9979(11)$ & $2.0069(11)$ & $2.1577(11)$ \\ %\hline 5 & 2& $6.4320(12)$ & $6.3321(12)$ & $5.4889(12)$ & $5.3011(12)$ & $5.4634(12)$ & $5.8542(12)$ & $6.1566(12)$ & $7.9681(12)$ \\ % \hline 5 & 3& $1.2301(10)$ & $1.0768(10)$ & $8.9851(11)$ & $8.1720(11)$ & $7.8702(11)$ & $7.7680(11)$ & $7.8183(11)$ & $8.5930(11)$ \\ % \hline 5 & 4& $2.9204(11)$ & $2.7067(11)$ & $1.8898(11)$ & $1.6095(11)$ & $1.5763(11)$ & $1.6133(11)$ & $1.6611(11)$ & $2.0669(11)$ \\ 5 & 5& $7.5836(10)$ & $1.6197(9)$ & $2.3275(9)$ & $2.5729(9)$ & $2.6174(9)$ & $2.6353(9)$ & $2.6477(9)$ & $2.7420(9)$ \\ \hline \end{tabular} \tablefoot{\tablefoottext{a}{In units of cm$^{3}$ molecule$^{-1}$ s$^{-1}$;} \tablefoottext{b}{$a(b)$ means $a\times 10^{{-b}}$.}}\vspace*{0.2mm} \end{table}