\begin{table} %%\centering \par \caption{shows the probability relations (fractional relation) between the true distribution ($N_t$; indicated by the first row) and the actually measured distribution ($N_{\rm m}$; indicated by the first column)${}^{\thefootnote}$.} \begin{tabular}{l l l l l l l} \hline\hline &Measured&&&&&\\ \hline true&$N(t)$&$N_t(0)$&$N_t(\Delta t)$&$N_t(2 \cdot \Delta t)$&$N_t(3 \cdot \Delta t)$&\dots\\ %\hline &$N_{\rm m}(0)$&$p$&$p\cdot (1-p)$&$p\cdot (1-p)$&$p\cdot (1-p)$&\dots\\ %\hline &$N_{\rm m}(\Delta t)$&&$p^2$&$p^2\cdot (1-p)$&$p^2\cdot (1-p)$&\dots\\ %\hline &$N_{\rm m}(2 \cdot \Delta t)$&&&$p^3$&$p^3\cdot (1-p)$&\dots\\ %\hline &$N_{\rm m}(3 \cdot \Delta t)$&&&&$p^4$&\dots\\ \hline \end{tabular} \label{table1} \end{table}