\begin{table}%t8 \caption{\label{dcf_comp}Discrete cross-correlations (based on components from the 8~GHz model fits) and Pearson's correlation coefficients (from~15~GHz model fits), calculated for various pairs jet parameters and the core flux density. Column~1 gives the frequency of the analyzed data set; Cols.~2 and~3 lists the two jet components participating in the correlation; Col.~4 shows the circular Gaussian parameter correlated. When ``core'' is the first component, its parameter is always flux-density. For 8~GHz data, DCF~peak and~$\tau$ are the peak of the discrete correlation function and the associated time~lag in years. For 15~GHz data, Corr.coeff. is the value of the Pearson's correlation coefficient, and $p$~the probability of getting such a high correlation by~chance.} %\centering \par \begin{tabular}{lllrcccc} \hline\hline\noalign{\smallskip} $\nu$ &Comp. & Comp. & Par. & DCF & $\tau$ & Corr. & $p$ \\ $\rm [GHz]$& ID 1 & ID 2 & & peak & & coeff. & \\ \hline 8&C0 & Ca & core sep. & --0.48 $\pm$ 0.12 & 0.54 $\pm$ 0.07 & & \\ &C0 & C2$_{1}$ & p.a. & --0.49 $\pm$ 0.14 & --0.32 $\pm$ 0.06 & & \\ &C0 & C2$_{3}$ & p.a. & 0.69 $\pm$ 0.18 & 0.14 $\pm$ 0.08 & & \\ &C1 & Ca & core sep. & 0.47 $\pm$ 0.06 & 0.08 $\pm$ 0.06 & & \\ & & & p.a. & --0.48 $\pm$ 0.07 & 0.48 $\pm$ 0.07 & & \\ &C1 & C2$_{1}$ & core sep. & --0.59 $\pm$ 0.09 & --0.80 $\pm$ 0.09 & & \\ & & & p.a. & --0.45 $\pm$ 0.09 & --0.29 $\pm$ 0.09 & & \\ &C1 & C2$_{2}$ & core sep. & 0.53 $\pm$ 0.14 & --0.02 $\pm$ 0.06 & & \\ & & & p.a. & 0.96 $\pm$ 0.03 & --0.02 $\pm$ 0.02 & & \\ &C1 & C2$_{3}$ & core sep. & 0.83 $\pm$ 0.06 & 0.81 $\pm$ 0.02 & & \\ & & & p.a. & 0.72 $\pm$ 0.09 & --0.06 $\pm$ 0.06 & & \\ &Ca & C2$_{1}$ & core sep. & --0.48 $\pm$ 0.09 & --0.09 $\pm$ 0.06 & & \\ &Ca & C2$_{3}$ & core sep. & 0.62 $\pm$ 0.09 & 0.55 $\pm$ 0.06 & & \\ & & & p.a. & --0.61 $\pm$ 0.07 & 0.49 $\pm$ 0.08 & & \\ &C2$_{1}$ & C2$_{2}$ & p.a. & --0.53 $\pm$ 0.08 & 0.42 $\pm$ 0.05 & & \\ &C2$_{1}$ & C2$_{3}$ & core sep. & 0.62 $\pm$ 0.09 & --0.42 $\pm$ 0.06 & & \\ & & & p.a. & --0.78 $\pm$ 0.09 & 0.17 $\pm$ 0.02 & & \\ &C2$_{2}$ & C2$_{3}$ & p.a. & 0.79 $\pm$ 0.05 & --0.21 $\pm$ 0.05 & & \\ \hline 8&Core & C0 & core sep. & 0.62 $\pm$ 0.09 & --0.23 $\pm$ 0.07 & & \\ & & & p.a. & 0.77 $\pm$ 0.10 & --0.09 $\pm$ 0.05 & & \\ & Core & C1 & core sep. & --0.47 $\pm$ 0.07 & 0.35 $\pm$ 0.08 & & \\ & & & p.a. & --0.45 $\pm$ 0.07 & --0.31 $\pm$ 0.04 & & \\ & Core & Ca & flux & 0.59 $\pm$ 0.06 & 0.49 $\pm$ 0.10 & & \\ & & & core sep. & --0.91 $\pm$ 0.04 & 0.23 $\pm$ 0.03 & & \\ & & & p.a. & --0.83 $\pm$ 0.04 & --0.92 $\pm$ 0.04 & & \\ & Core & C2$_{1}$ & core sep. & 0.64 $\pm$ 0.07 & 0.02 $\pm$ 0.05 & & \\ & Core & C2$_{2}$ & p.a. & --0.47 $\pm$ 0.08 & --0.29 $\pm$ 0.05 & & \\ & Core & C2$_{3}$ & core sep. & 0.77 $\pm$ 0.05 & --0.36 $\pm$ 0.04 & & \\ & & & p.a. & 0.54 $\pm$ 0.08 & 0.37 $\pm$ 0.10 & & \\ \hline 15&Core & C0 & core sep. & & & 0.65 $\pm$ 0.05 & 0.021 \\ &Core & Ca & core sep. & & & --0.72 $\pm$ 0.05 & 0.008 \\ & & & p.a. & & & 0.49 $\pm$ 0.09 & 0.146 \\ & Core & C2 & core sep. &&& --0.49 $\pm$ 0.08 & 0.124 \\ & Core & C4 & p.a. &&& --0.56 $\pm$ 0.08 & 0.074 \\ \hline 15&C0 & C2 & p.a. &&& 0.77 $\pm$ 0.04 & 0.006 \\ &C1 & Ca & flux &&& --0.84 $\pm$ 0.03 & 0.001 \\ & & & p.a. &&& --0.67 $\pm$ 0.06 & 0.025 \\ & Ca & C2 & flux &&& --0.60 $\pm$ 0.07 & 0.051 \\ & & & core sep. &&& 0.69 $\pm$ 0.06 & 0.019 \\ & & & p.a. &&& 0.54 $\pm$ 0.08 & 0.084 \\ \hline \end{tabular} \end{table}