\begin{table}%t6 %\centering \par \caption {\label{tab:stack160}Stacking extragalactic number counts at 160~$\mu$m. } %\centerline {\begin{tabular}{lrrrr} \hline\hline \noalign{\smallskip} $\langle S\rangle$ & d$N/{\rm d}S.S^{2.5}$ & $\sigma_{\rm clus.}$ & $\sigma_{\rm clus.+calib.}$ & Field\\ \cline{1-4} \noalign{\smallskip} (in mJy) & \multicolumn{3}{c}{(in gal~Jy$^{1.5}$~sr$^{-1}$)} & \\ \hline $ 3.11\pm 0.46$ & 6795. & 2163. & 2485. & GTO CDFS\\ $ 4.71\pm 0.16$ & 9458. & 1236. & 2104. & COSMOS\\ $ 6.74\pm 0.22$ & 13203. & 1627. & 2880. & COSMOS\\ $ 9.65\pm 0.26$ & 18057. & 2307. & 3986. & COSMOS\\ $ 12.95\pm 0.37$ & 19075. & 2388. & 4182. & COSMOS\\ $ 19.82\pm 0.48$ & 22366. & 2944. & 4987. & SWIRE EN1\\ $ 25.71\pm 0.81$ & 20798. & 2811. & 4682. & SWIRE EN1\\ $ 33.74\pm 0.98$ & 16567. & 2671. & 4004. & SWIRE EN1\\ $ 45.18\pm 2.08$ & 20089. & 4849. & 6049. & SWIRE EN1\\ \hline \end{tabular}} \tablefoot {$\sigma_{\rm clus.}$ is the uncertainty taking into account clustering (see Sect.~\ref{subsection:sectclus}). $\sigma_{\rm clus.+calib.}$ takes into account both clustering and calibration \citep{Stansberry2007}.} \end{table}