\begin{table}%t5 % \par \caption{\label{zkT}Results to the Wilcoxon rank-sum test applied to redshift and~$T_{\rm vir}$ for the CC, SCC, WCC~and NCC~subpopulations.} \small %\centerline { \begin{tabular}{l c c c } \hline \hline Subsamples & Parameter & Significance & Which subsample \\ being & being & ($\sigma$) & has a larger avg. \\ compared & used & & param. value? \\ (1) & (2) & (3) & (4) \\ \hline CC-NCC & redshift & 0.82 & NCC~\\ SCC-NCC & redshift & 1.12 & NCC~\\ SCC-WCC & redshift & 0.96 & WCC~\\ WCC-NCC & redshift & 0.16 & NCC~\\ CC-NCC & $T_{\rm vir}$ & 1.98 & NCC~\\ SCC-NCC & $T_{\rm vir}$ & 2.41 & NCC~\\ SCC-WCC & $T_{\rm vir}$ & 1.62 & WCC~\\ WCC-NCC & $T_{\rm vir}$ & 0.81 & NCC~\\ \hline \end{tabular}} %\smallskip \tablefoot{Columns: (1)~subsamples being compared, (2)~the parameter (redshift or $T_{\rm vir}$) being used for the comparison, (3)~the significance that the two distributions are not consistent with the null hypothesis (they are from the same parent distribution), (4)~the subpopulation that comes from the larger redshift or higher temperature distribution.} \end{table}