\begin{table}%t5 \caption{\label{tab:coef}Globular cluster number density profiles.} \small%\centering \par \begin{tabular}{lllll} \hline \hline\noalign{\smallskip} & \multicolumn{1}{c}{$N_0$} & \multicolumn{1}{c}{$R_{0}$} & \multicolumn{1}{c}{$\alpha$} & \multicolumn{1}{c}{$\mathcal{B}\left(\frac{1}{2},\alpha \right)$} \\ \par & \multicolumn{1}{c}{[$\rm{GCs~ arcmin}^{-2}$]} & \multicolumn{1}{c}{[arcmin]} & \multicolumn{1}{c}{} & \multicolumn{1}{c}{} \\ \hline Red & 28.43 $\pm$ 7.82 &1.63 $\pm$ 0.34 & 1.02 $\pm$ 0.04 & 1.98 \\ Blue &8.39 $\pm$ 1.05 &2.91 $\pm$ 0.42 & 0.79 $\pm$ 0.03 & 2.32\\ All & 35.54 $\pm$ 6.13 &1.74 $\pm$ 0.27 & 0.84 $\pm$ 0.02 & 2.22 \\ \hline \end{tabular} \tablefoot{Fitting a cored power-law (Eq.~(\ref{eq:corepl})) to the data given in Table~\ref{tab2} of \cite{bassino06} yields the parameters listed above (the profile for ``all'' GCs was obtained by adding the number counts of the red and blue GCs).} \end{table}