\begin{table} %\centering \par \caption {\label{tab:l183}Line properties (main beam temperature scale) and total column densities derived towards L~183. Numbers in parentheses are powers of~10.} \begin{tabular}{l r r r r r c c r}\hline\hline\noalign{\smallskip} Line & $\delta x$ & $\delta y$ & $T_{\rm mb}$ & $W$ & \dveq$^e$ & $N_{\rm tot}$$^f$ & $N(\hh)$ & $N_{\rm tot}/2N(\hh)$$^g$ \\ & \arcsec & \arcsec & mK & m\kkms & \kms & \dix{12}~\cc & \dix{22}~\cc \smallskip\\\hline % % L~183 CN%-l183.tdv % l183-cn_final.cdens & 0 & 0 & 700 $\pm$ 60& 180 $\pm$ 10& 0.26 & 53 & 7.0 & 3.8$(-$10) \\ & --40 & 0 & 600 $\pm$ 70& 140 $\pm$ 12& 0.23 & 41 & 3.3 & 6.2$(-$10) \\ & --20 & 0 & 650 $\pm$ 70& 135 $\pm$ 10& 0.21 & 40 & 6.1 & 3.3$(-$10) \\ & 20 & 0 & 590 $\pm$ 80& 110 $\pm$ 10& 0.19 & 34 & 4.8 & 3.5$(-$10) \\ & 40 & 0 & 455 $\pm$ 80& 60 $\pm$ 10& 0.13 & 18 $\pm$ 2.9 & 2.8 & 3.2$(-$10) \\ & 0 & --40 & 580 $\pm$ 85& 130 $\pm$ 10& 0.22 & 38 & 3.9 & 4.9$(-$10) \\ & 0 & --20 & 755 $\pm$ 60& 160 $\pm$ 7& 0.21 & 47 & 5.6 & 4.2$(-$10) \\ & 0 & 20 & 670 $\pm$ 90& 140 $\pm$ 10& 0.21 & 41 & 6.3 & 3.3$(-$10) \\ & 0 & 40 & 660 $\pm$ 80& 175 $\pm$ 15& 0.26 & 48 & 5.7 & 4.2$(-$10) \\ \thcn$^a$ & 0 & 0 & 115 $\pm$ 12& 28 $\pm$ 2& 0.24 & 0.82 & 7.0& 5.9$(-$12)\\ & --40 & 0 & 75 $\pm$ 25& $<$18& & $<$0.53 & 3.3& $<$8.0$(-$12)\\ & --20 & 0 & 100 $\pm$ 20& 21 $\pm$ 3& 0.21 & 0.62 $\pm$ 0.09 & 6.1& 5.1$(-$12)\\ & 20 & 0 & 65 $\pm$ 20& 15 $\pm$ 3& 0.23 & 0.44 $\pm$ 0.09 & 4.8& 4.6$(-$12)\\ & 40 & 0 & 100 $\pm$ 20& $<$18& & $<$0.53 & 2.8& 9.5$(-$12)\\ & 0 & --40 & 65 $\pm$ 20& 15 $\pm$ 3& 0.23 & 0.44 $\pm$ 0.09 & 3.9& 5.6$(-$12)\\ & 0 & --20 & 95 $\pm$ 20& 16 $\pm$ 3& 0.17 & 0.47 $\pm$ 0.09 & 5.6& 4.2$(-$12)\\ & 0 & 20 & 115 $\pm$ 20& 30 $\pm$ 2& 0.26 & 0.88 & 6.3& 7.0$(-$12)\\ & 0 & 40 & 115 $\pm$ 20& 32 $\pm$ 4& 0.28 & 0.94 $\pm$ 0.12 & 5.7& 8.2$(-$12)\\ H\thcn$^b$ % l183-h13cn_final.cdens & 0 & 0 & 200 $\pm$ 11& 98 $\pm$ 4& 0.49 & 0.34 & 7.0 & 2.4$(-$12) \\ & --40 & 0 & 135 $\pm$ 17& 46 $\pm$ 5& 0.34 & 0.16 $\pm$ 0.02 & 3.3 & 2.4$(-$12) \\ & --20 & 0 & 250 $\pm$ 20& 123 $\pm$ 7& 0.49 & 0.42 & 6.1 & 3.4$(-$12) \\ & 20 & 0 & 195 $\pm$ 15& 94 $\pm$ 4& 0.48 & 0.32 & 4.8 & 3.3$(-$12) \\ & 40 & 0 & 160 $\pm$ 15& 80 $\pm$ 5& 0.50 & 0.27 & 2.8 & 4.8$(-$12) \\ & 0 & --40 & 180 $\pm$ 35& 76 $\pm$ 7& 0.42 & 0.26 & 3.9 & 3.3$(-$12) \\ & 0 & --20 & 245 $\pm$ 18& 91 $\pm$ 5& 0.37 & 0.31 & 5.6 & 2.8$(-$12) \\ & 0 & 20 & 230 $\pm$ 17& 100 $\pm$ 4& 0.43 & 0.34 & 6.3 & 2.7$(-$12) \\ & 0 & 40 & 230 $\pm$ 18& 101 $\pm$ 5& 0.44 & 0.34 & 5.7 & 3.0$(-$12) \\ HN\thc$^c$ & 0 & 0 & 935 $\pm$ 20& 540 $\pm$ 4& 0.58 & 0.93 & 7.0 & 6.6$(-$12) \\ & --40 & 0 & 788 $\pm$ 35& 475 $\pm$ 7& 0.60 & 0.82 & 3.3 & 1.2$(-$11) \\ & --20 & 0 & 930 $\pm$ 35& 570 $\pm$ 7& 0.61 & 0.99 & 6.1 & 8.1$(-$12) \\ & 20 & 0 & 710 $\pm$ 33& 433 $\pm$ 7& 0.61 & 0.75 & 4.8 & 7.8$(-$12) \\ & 40 & 0 & 440 $\pm$ 35& 275 $\pm$ 13& 0.62 & 0.48 & 2.8 & 8.6$(-$12) \\ & 0 & --40 & 840 $\pm$ 35& 445 $\pm$ 6& 0.53 & 0.77 & 3.9 & 9.9$(-$12) \\ & 0 & --20 & 955 $\pm$ 30& 517 $\pm$ 6& 0.54 & 0.89 & 5.6 & 7.9$(-$12) \\ & 0 & 20 & 1030 $\pm$ 35& 700 $\pm$ 7& 0.58 & 1.2 & 6.3 & 9.5$(-$12) \\ & 0 & 40 & 1115 $\pm$ 30& 712 $\pm$ 7& 0.64 & 1.2 & 5.7 & 1.1$(-$11) \\ \nnhp$^d$ %n2hp/n2hp-l183.cdens & 0 & 0 & 1356 $\pm$ 20& 309 $\pm$ 6 & 0.23 & 10.9 & 7.0 & 7.8$(-$11)\\ & 80 & 0 & 264 $\pm$ 26& 67 $\pm$ 5 & 0.25 & 0.786 & 1.5 & 2.6$(-$11)\\ % Comp @93176.2650 MHz with RI=3/27 -->xconv=35.2/3=11.73 & 60 & 0 & 160 $\pm$ 24& 40 $\pm$ 7 & 0.25 & 1.41 $\pm$ 0.246 & 2.0 & 3.5$(-$11)\\ & 40 & 0 & 564 $\pm$ 37& 153 $\pm$ 11 & 0.27 & 5.39 & 2.8 & 9.6$(-$11)\\ & 20 & 0 & 1037 $\pm$ 30& 239 $\pm$ 9 & 0.23 & 8.41 & 4.8 & 8.8$(-$11)\\ & --20 & 0 & 1209 $\pm$ 29& 283 $\pm$ 9 & 0.23 & 9.96 & 6.1 & 8.2$(-$11)\\ & --40 & 0 & 709 $\pm$ 21& 164 $\pm$ 6 & 0.23 & 5.77 & 3.3 & 8.7$(-$11)\\ & --60 & 0 & 408 $\pm$ 19& 103 $\pm$ 6 & 0.25 & 3.63 & 2.3 & 7.9$(-$11)\\ & --80 & 0 & 327 $\pm$ 26& 79 $\pm$ 8 & 0.24 & 2.78 $\pm$ 0.282 & 2.4 & 5.8$(-$11)\\ \hline \end{tabular} \par \tablefoot {Error bars are 1$\sigma$, and upper limits on $W$ and $N_{\rm tot}$ are at the 5$\sigma$ level. A final calibration uncertainty on the column density of 10\% has been adopted, unless smaller than 1$\sigma$. We adopt a systematic uncertainty on the dust column density of 30\% which reflects the uncertainties on \tdust\ and $\kappa_{\nu}$. \tablefoottext{a}{Strongest component at 108780.2010~MHz, with R.I. = 0.194.} \tablefoottext{b}{Strongest component at 86340.1840~MHz, with R.I. = 0.556.} \tablefoottext{c}{The integrated intensity includes the three blended HFS components.} \tablefoottext{d}{Weakest HFS component at 93171.6210~MHz with R.I. = 0.037 unless specified. At offsets (80\arcsec, 0\arcsec) we use the isolated HFS component at 93176.2650~MHz with R.I. = 0.1111 (see Table~\ref{tab:summary}).} \tablefoottext{e}{$\dveq=W/T_{\rm mb}$ is the equivalent width. Error bars are 1$\sigma$, and upper limits on $W$ and} \tablefoottext{f}{$N_{\rm tot}=W\times N_0/\rm R.I.$} \tablefoottext{g}{Fractional abundances with respect to H assuming $N(\h)=2N(\hh)$.}} \end{table}