\begin{table}%t5 \caption{\label{tab:fragmentation-results}Results from the fragmentation calibration setup.} %\centering \par \begin{tabular}{c c c} \hline\hline\noalign{\smallskip} $K_0$ [kPa] & Slope $\alpha$ & Norm. largest fragment $\mu$ \\ \hline 3.00 & 0.361 $\pm$ 0.004 & 0.200 $\pm$ 0.008 \\ 3.50 & 0.429 $\pm$ 0.002 & 0.172 $\pm$ 0.002 \\ 4.00 & 0.518 $\pm$ 0.011 & 0.230 $\pm$ 0.009 \\ 4.25 & 0.523 $\pm$ 0.006 & 0.194 $\pm$ 0.004 \\ 4.50 & 0.673 $\pm$ 0.017 & 0.234 $\pm$ 0.007 \\ 4.75 & 0.834 $\pm$ 0.025 & 0.196 $\pm$ 0.005 \\ 5.00 & 0.832 $\pm$ 0.063 & 0.198 $\pm$ 0.011 \\ 5.50 & 0.836 $\pm$ 0.052 & 0.220 $\pm$ 0.010 \\ 6.00 & 2.027 $\pm$ 0.121 & 0.171 $\pm$ 0.002 \\ 6.50 & 0.910 $\pm$ 0.053 & 0.390 $\pm$ 0.013 \\ \hline \end{tabular} \tablefoot {The slope $\alpha$ of the power~law increases with increasing bulk modulus~$K_0$. Remarkably, the size of the normalised biggest fragment remains nearly constant around $\mu \approx 0.2$ for $K_0 \le 6.0$~kPa.} \end{table}