\begin{table}%t3 \caption{\label{tab:rm1}Rotation measures values of the observed sources.} %\centerline { \begin{tabular}{c c c c c c c} \hline \hline \noalign{\smallskip} Source & Projected distance & n. of beams &$\langle \rm RM\rangle$ &$\sigma_{\rm RM,obs}$& Err$_{\rm fit}$& $\sigma_{\rm RM}$ \\ & kpc & & rad/m$^2$ & rad/m$^2$ & rad/m$^2$ & rad/m$^2$ \\ \hline 5C4.85 & 51 & 35 &--256~$\pm$~50 & 303 & 46 & 299~$\pm$~36 \\ 5C4.81 & 124 & 56 &--120~$\pm$~22 & 166 & 48 & 159~$\pm~$17 \\ 5C4.74 & 372 & 10 &372~$\pm$~51 & 154 & 44 & 148~$\pm$~41 \\ 5C4.114 & 532 & 16 & 51~$\pm$~4 & 16 & 2 & 16~$\pm$~3 \\ 5C4.127 & 919 & 7 & 21~$\pm$~30 & 65 & 36 & 54~$\pm$~26 \\ 5C4.42 & 1250 & 33 & 6~$\pm$~12 & 56 & 43 & 36~$\pm$~11 \\ 5C4.152 & 1489 & 4 & 32~$\pm$~27 & 37 & 28 & 24~$\pm$~21 \\ \hline \end{tabular}} \par \tablefoot { {Column~1: source name Col. 2: source projected distance from the X-ray cluster center;} {Col. 3: number of beams over which RMs are computed;} {Col. 4: mean value of the observed RM distribution;} {Col. 5: dispersion of the observed RM distribution; } {Col. 6: median of the RM fit error; Col.~7: dispersion of the RM distribution after noise deconvolution.}} \par \end{table}