\begin{table}%t1 \caption{\label{t:dmaparameters}Characteristics of the dynamic atmospheric models for pulsating, C-rich AGB~stars used for the modelling (for a detailed description see text and~DMA3).} %\centering \par \begin{tabular}{llccc} \hline \hline \noalign{\smallskip} \multicolumn{2}{l}{Model:}& W & S & M \\ \hline $L_\star$&[$L_{\odot}$]&7000&10~000&7000\\ $M_\star$&[$M_{\odot}$]&1.0&1.0&1.5\\ $T_\star$&[K]&2800&2600&2600\\ $[$Fe/H$]$&[dex]&0.0&0.0&0.0\\ C/O&\textit{by number}&1.4&1.4&1.4\\ \hline $R_\star$&[$R_{\odot}$]&355&493&412\\ &[AU]&1.65&2.29&1.92\\ log $g_\star$& &--0.66&--0.94&--0.61\\ \hline $P$&[d]&390&490&490\\ $\Delta u_{\rm p}$&[km~s$^{-1}$]&2&4&6\\ $f_{\rm L}$& &1.0&2.0&1.5\\ $\Delta m_{\rm bol}$&[mag]&0.21&0.86&1.07\\ \hline\noalign{\smallskip} $\langle\dot M\rangle$&[$M_{\odot}\ $yr$^{-1}$]&--&$4.3\times 10^{-6}$& $2.5 \times 10^{-6}$\\ $\langle u \rangle$&[km~s$^{-1}$]&--&15&7.5\\ $\langle f_{\rm c}$$\rangle$& &--&0.28&0.40\\ \hline \end{tabular} \tablefoot{Listed are (i) parameters of the hydrostatic initial model; (ii)~quantities derivable from these parameters; (iii)~attributes of the inner boundary (piston) used to simulate the pulsating stellar interior as well as the resulting bolometric amplitude~$\Delta m_{\rm bol}$; and (iv)~properties of the resulting wind. The notation was adopted from previous papers~(DMA3,~DMA4): $P$,~$\Delta u_{\rm p}$~-- period and velocity amplitude of the piston at the inner boundary; $f_{\rm L}$~-- free parameter to adjust the luminosity amplitude at the inner boundary; $\langle\dot M\rangle$, $\langle u \rangle$~-- mean mass loss rate and outflow velocity at the outer boundary; $\langle f_{\rm c}$$\rangle$~-- mean degree of condensation of carbon into dust at the outer boundary. The radial coordinates in this work are plotted in units of the corresponding stellar radii~$R_\star$ of the hydrostatic initial models, calculated from their luminosities~$L_\star$ and temperatures $T_\star$ (as given in the table) via the relation $L_\star$~=~4$\pi$$R_\star^2$~$\sigma$$T_\star^4$.} \end{table}