\begin{table}%t4 %\centering \par \caption{\label{Tab_MCMC} MCMC parameters for \protect\centotrentatre, 2P/Encke, and (1) Ceres.} \begin{tabular}{llll} \hline\hline\noalign{\smallskip} &\multicolumn{1}{c}{133P/Elst-Pizarro}&\multicolumn{1}{c}{2P/Encke}&\multicolumn{1}{c}{(1) Ceres}\\ \hline\\[-3mm] $s$ & $\phantom{-}0.87^{\rm +0.47}_{-0.31}$&$0.31^{\rm +0.27}_{-0.24}$ & $0.731^{\rm +0.051}_{-0.024}$\\[2mm] $y_1$ & $\phantom{-}2.39^{\rm +2.19}_{-0.84}$ & $0.99^{\rm +0.41}_{-0.26}$ & $3.258^{\rm +0.281}_{-0.079}$\\[2mm] $y_2$ & $\phantom{-}0.412^{\rm +0.033}_{-0.412}$ & $0.236^{\rm +0.064}_{-0.047}$& $0.2053^{\rm +0.0023}_{-0.0159}$\\[2mm] $\Re(Z)$ & $-0.20^{\rm +0.56}_{-0.50}$ & $1.15^{\rm +0.31}_{-0.22}$ & $0.0037^{\rm +0.0385}_{-0.1000}$ \\[2mm] $\Im(Z)$ & $-0.39^{\rm +1.82}_{-0.36}$ & $1.975^{\rm +0.328}_{-0.099}$ & $2.0607^{\rm +0.0996}_{-0.0048}$ \\[2mm] $w$ & $\phantom{-}0.71^{\rm +0.15}_{-0.21}$ & $0.848^{\rm +0.36}_{-0.045}$ &$0.8084^{\rm +0.0070}_{-0.0096}$\\[1mm] \hline \end{tabular} \tablefoot{$\Re(Z)$ and $\Im(Z)$ are the real and imaginary parts of the complex amplitude $Z$, respectively.} \end{table}