\begin{table}%t3 \caption{\label{openChannelsCD3OCD2+}Energetically open and plausible reaction channels for the DR of CD$_{3}$OCD$_2^+$\tablefootmark{a}.} %\centerline {\begin{tabular}{llllll} \hline \hline\noalign{\smallskip} Prod.1 & Prod.2 & Prod.3 & Prod.4 & $\Delta E$ & Maximum \\ & & & & & losses \\ & & & & (eV) & (\%) \\ \hline CD$_2$CDOD & D & & & $-$5.88 & \\ C$_2$D$_4$O & D & & & $-$5.10 & \\ CD$_3$CDO & D & & & $-$6.32 & \\ & & & & & \\ C$_2$D$_3$O & D$_2$ & & & $-$6.93 & \\ & & & & & \\ C$_2$D$_3$O & D & D & & $-$2.41 & \\ & & & & & \\ CD$_3$OD & CD & & & $-$2.73 & 0.6 \\ & & & & & \\ CD$_2$OD & CD$_2$ & & & $-$2.90 & 0.4 \\ CD$_3$O & CD$_2$ & & & $-$2.63 & 0.3 \\ & & & & & \\ CD$_2$O & CD & D$_2$ & & $-$1.85 & \\ CD$_2$O & CD$_3$ & & & $-$6.50 & 3.0 \\ CD$_2$O & CD$_2$ & D & & $-$1.75 & \\ & & & & & \\ CDO & CD$_4$ & & & $-$7.13 & 2.6 \\ CDO & CD$_3$ & D & & $-$2.59 & \\ CDO & CD$_2$ & D$_2$ & & $-$2.35 & \\ & & & & & \\ CO & CD$_4$ & D & & $-$6.47 & \\ CO & CD$_3$ & D$_2$ & & $-$6.44 & \\ CO & CD$_3$ & D & D & $-$1.93 & \\ & & & & & \\ C$_2$D$_5$ & O & & & $-$2.99 & 0.5 \\ & & & & & \\ C$_2$D$_4$ & OD & & & $-$5.86 & 2.1 \\ C$_2$D$_4$ & O & D & & $-$1.42 & \\ & & & & & \\ C$_2$D$_3$ & OD$_2$ & & & $-$6.22 & 1.7 \\ C$_2$D$_3$ & OD & D & & $-$1.05 & \\ C$_2$D$_3$ & O & D$_2$ & & $-$1.13 & \\ & & & & & \\ C$_2$D$_2$ & OD$_2$ & D & & $-$4.70 & \\ C$_2$D$_2$ & OD & D$_2$ & & $-$4.06 & \\ \hline \end{tabular}} \tablefoot{\tablefoottext{a}{Prod.1--Prod.4 displays the different products and $\Delta E$ is the energy released in the reaction. Losses show the estimated worst case losses of the lightest fragment predicted from Monte Carlo simulations assuming that all the available energy is transformed into kinetic energy in an instantaneous reaction. Energies calculated from values at~\citet{lias88} and~\citet{NIST}}.} \end{table}