\begin{table}%t1 %\centering \par \caption{\label{model_prop}Properties of the simulations and time averaged value of~$\alpha$.} \begin{tabular}{@{}cccc} \hline\hline \noalign{\smallskip} Model & Resolution & $Re$ & $\alpha$ \\ \hline \noalign{\smallskip} $Re3125$ & $(128,192,128)$ & 3125 & $7.9 \times 10^{-3} \pm 4.5 \times 10^{-4}$ \\ $Re6250$ & $(256,384,256)$ & 6250 & $5.9 \times 10^{-3} \pm 1.8 \times 10^{-4}$ \\ $Re12500$ & $(512,768,512)$ & 12~500 & $8.4 \times 10^{-3} \pm 3.8 \times 10^{-4}$ \\ \hline \end{tabular} \tablefoot{The errors on $\alpha$ are computed following \citet{longaretti&lesur10}: the time history of $\alpha$ is divided in $N$ bins of size $\tau$. $\tau$ is varied between $0.1$ and 8~orbits. For each $N$, the standard deviation $\sigma_N$ is computed according to $\sigma_N=[\Sigma (\alpha_i-\alpha)/N]^{1/2}$, where $\alpha_i$ is the mean value in bin~i. For large~$N$, $\sigma_N$ scales like $N^{-1/2}$. The errors reported on $\alpha$ use that scaling to estimate $\sigma_N$ when $\tau = 40$~orbits, the time duration over which the mean values of $\alpha$ are calculated.} \end{table}