\begin{table}%t1 \caption{\label{T:tab0}Summary of the notations used in this article to denote the various physical quantities and parameters involved in our description of high energy particle yield in supernova remnants (SNR). } %\centering \par \begin{tabular}{cl} \hline \hline \multirow{1}{40mm}{\bf Turbulence parameters} & \begin{tabular}{cl} \multirow{1}{3mm}{$\beta$} & One D power-law spectral index of the turbulence spectrum (Eq. (\ref{Eq:nus})) \\ \multirow{1}{3mm}{$\eta_{\rm T}$} & Level of magnetic fluctuations with respect to the mean ISM magnetic field (Eq. (\ref{Eq:nus})) \\ \multirow{1}{3mm}{$\phi$} & Logarithm of the ratio of the maximum momentum to the injection momentum (Eq. (\ref{Eq:BNRB0})) \\ \multirow{1}{3mm}{$\lambda_{\rm max}$} & Longest wavelength of the magnetic turbulence spectrum (Sect. \ref{S:Dup}) \\ \multirow{1}{3mm}{$\ell_{\rm coh}$} & Coherence length of the magnetic fluctuations (Sect. \ref{S:Dup}) \\ \multirow{1}{3mm}{$\sigma$} & Normalisation factor entering the turbulent spectrum (Sect. \ref{S:Dup}) \\ \multirow{2}{3mm}{$\delta_{\rm u/d}$} & Power-law energy dependance index of the relaxation lengths either up- \\ & or downstream (Sect. \ref{S:DoMF} and (Eq. (\ref{Eq:Elld})) \\ \multirow{1}{3mm}{$H$} & Ratio of the upstream to the downstream diffusion coefficient at the shock front (Eq. (\ref{Eq:D}))\\ \multirow{1}{3mm}{$\delta_{\rm B}$} & Ratio of the resonant to the non-resonant magnetic field strength at the shock front (Eq. (\ref{Eq:BRBNR})) \\ \end{tabular} \\ \hline \multirow{1}{40mm}{\bf Relativistic particle parameters} & \begin{tabular}{cl} \multirow{1}{8mm}{$\xi_{\rm CR}$} & Ratio of the CR pressure to the shock dynamical pressure (Eq. (\ref{Eq:BRBNR}))\\ \multirow{1}{8mm}{$r_{\rm L}$} & Larmor radius of a particle (defined using resonant magnetic field) \\ \multirow{1}{8mm}{$\rho$} & Ratio of the particle Larmor radius to $\lambda_{\rm max}/2\pi$ (also called reduced rigidity, see Sect. \ref{S:Dup})\\ \multirow{1}{8mm}{$E_{\rm CR-max}$} & Maximal cosmic ray energy (Sect. \ref{S:Dup}) \\ \multirow{1}{8mm}{$E_{\rm e-max}$} & Maximal electron energy (Sect. \ref{S:Adva})\\ \multirow{1}{8mm}{$E_{\rm \gamma-cut}$} & Cut-off synchrotron photon energy emitted by electrons at $E_{\rm e-max}$ (Sect. \ref{S:Adva}) \\ \multirow{1}{8mm}{$E_{\rm CR-min}$} & Injection energy of the cosmic rays (Sect. \ref{S:TDD}) \\ \multirow{1}{8mm}{$E_{\rm e-obs}$}& Energy of the electrons producing the observed X-ray filaments (Sect. \ref{S:Mfrel}) \\ \end{tabular} \\ \hline \noalign{\smallskip} \multirow{1}{40mm}{\bf SNRs parameters} & \begin{tabular}{cl} \multirow{1}{12mm}{$V_{\rm sh,4}$} & Velocity of the SNR shock wave (in $10^4$ km~s$^{-1}$ unit)\\ \multirow{2}{12mm}{$B_{\rm d/u,-4}$} & Magnetic field amplitude at the shock front respectively in the \\ & down- and upstream medium (in $10^{-4}$ Gauss unit)\\ \multirow{1}{12mm}{$r_{\rm B}, r_{\rm sub}, r_{\rm tot}$} & Magnetic, sub-shock, and total shock compression ratios (Sect. \ref{S:Adva}) \\ \multirow{1}{12mm}{$\Delta R_{\rm X,-2}$} & X-ray filament deprojected width (in $10^{-2}$ parsec unit, Sect. \ref{S:Mfrel}) \\ \end{tabular} \\ \hline \noalign{\smallskip} \multirow{1}{40mm}{\bf Equation parameters} & \begin{tabular}{cl} \multirow{1}{12mm}{${y}(r)$} & $3 r^2/(r-1)$ (Eq. (19)) \\ \multirow{1}{12mm}{${K}(r,\beta)$} & $q(\beta) \times (H(r,\beta)/r+1)$ (Eq. (36)) \\ \multirow{1}{12mm}{${f}_{\rm sync}$} & $H(r,\beta)+r / H(r,\beta)/r_{\rm B}^2 +r$ (Eq. (39)) \\ \multirow{1}{12mm}{$g(r)$} & $3/(r-1) \times (H(r,\beta)/r + 1)$ (Eq. (40)) \\ \multirow{1}{12mm}{$C(\delta_{\rm d})$} & $(E_{\rm e-max}/E_{\rm e-obs})^{\delta_{\rm d}}$ (Eq. (41)) \\ \end{tabular} \\\hline \end{tabular} \end{table}