\begin{table}%ta.1 %\centering \par \caption{Summary of models computed to compare numerical growth rates with theoretical predictions.} \tiny \begin{tabular}{lccccccccccc} \hline\hline \noalign{\smallskip} Name & $l_x$ & $l_y$ & $m_x \times m_y$ & $P_0$ & $U_0$ & $\Mach$ & $a$ & $\vec b_0$ & $k_x$ & $\Gamma_{\rm MP}$ & $\Gamma_{\rm num}$\\ \hline grw-1 & 1 & 2 & $ 50 \times 100$ & 1 & 1.29 & 1 & 0.05 & $(0,0,0)$ & $2\pi$ & 1.73 & 1.64 \\ grw-2 & 1 & 2 & $100 \times 200$ & 1 & 1.29 & 1 & 0.05 & $(0,0,0)$ & $2\pi$ & 1.73 & 1.74 \\ grw-3 & 1 & 2 & $200 \times 400$ & 1 & 1.29 & 1 & 0.05 & $(0,0,0)$ & $2\pi$ & 1.73 & 1.75 \\ grw-4 & 1 & 2 & $400 \times 800$ & 1 & 1.29 & 1 & 0.05 & $(0,0,0)$ & $2\pi$ & 1.73 & 1.75 \\ %\hline grw-5 & 1 & 2 & $200 \times 400$ & 1 & 1.29 & 1 & 0.025 & $(0,0,0)$ & $2\pi$ & 2.4 & 2.44 \\ grw-6 & 1 & 2 & $200 \times 400$ & 1 & 1.29 & 1 & 0.1 & $(0,0,0)$ & $2\pi$ & 0.66 & 0.68 \\ %\hline grw-7 & 1 & 2 & $200 \times 400$ & 1 & 0.645 & 0.5 & 0.05 & $(0,0,0)$ & $2\pi$ & 1.09 & 1.07 \\ grw-8 & 1 & 2 & $200 \times 400$ & 1 & 1.843 & $10/7$ & 0.05 & $(0,0,0)$ & $2\pi$ & 1.77 & 1.79 \\ %\hline grw-9 & 1 & 2 & $200 \times 400$ & 1 & 0.645 & 0.5 & 0.05 & $(0,0,0)$ & $4\pi$ & 1.36 & 1.35 \\ %\hline grw-10 & 1 & 2 & $200 \times 400$ & 1 & 1.29 & 1 & 0.05 & $(0.129,0,0)$ & $2\pi$ & 1.69 & 1.70 \\ grw-11 & 1 & 2 & $200 \times 400$ & 1 & 1.29 & 1 & 0.05 & $(0.258,0,0)$ & $2\pi$ & 1.56 & 1.54 \\ \hline \end{tabular} \tablefoot{\label{Tab:n2d-grow-models}The columns give the model name, the size of the domain ($l_x$, $l_y$), the initial pressure, $P_0$, the velocity shear, $U_0$, the corresponding Mach number $\Mach = U_0 / c_{\rm s}$, the initial magnetic field $\vec b_0$, the initial width of the shear flow, $a$, the corresponding wave number, $k_x$, the growth rate, $\Gamma_{\rm MP}$, obtained from \cite{Miura_Pritchett__1982__JGR__MHD-KH-stability}, and an estimate of the numerical growth rate, $\Gamma_{\rm num}$.} \end{table}