\begin{table}%ta.4 %\centering \par \caption{\label{Tab:kh2--Abbremsung}Disruption time and deceleration rate of weak-field models.} \vspace*{-2mm} \tiny \begin{tabular}{lcrrrrrrrrrrrr} \hline\hline \noalign{\smallskip} $\Mach$ & $a$ & $b_0^x$ & $\Alfv$ & \multicolumn{2}{c}{256} & \multicolumn{2}{c}{512} & \multicolumn{2}{c}{1024} & \multicolumn{2}{c}{2048} & \multicolumn{2}{c}{4096} \\ % \hline & & $\left[ 10^{-4} \right]$ & & $t_{{\rm dis}}$ & $\sigma_{{\rm dec};3}$ & $t_{{\rm dis}}$ & $\sigma_{{\rm dec};3}$ & $t_{{\rm dis}}$ & $\sigma_{{\rm dec};3}$ & $t_{{\rm dis}}$ & $\sigma_{{\rm dec};3}$ & $t_{{\rm dis}}$ & $\sigma_{{\rm dec};3}$ \\ \noalign{\smallskip}\hline 0.5 & 0.05 & $200$ & 25 & 7.6 & 19.0 & 7.6 & 23.0 & 7.6 & 18.6 & 7.6 & 22.4 \\ 0.5 & 0.05 & $100$ & 50 & 14.4 & 10.7 & 13.7 & 11.7 & 12.7 & 14.3 & 12.6 & 11.6 & & \\ 0.5 & 0.05 & $50$ & 100 & 80.1 & 4.1 & 45.4 & 5.9 & 23.4 & 7.4 & 22.9 & 10.7 & 22.6 & 10.3 \\ 0.5 & 0.05 & $20$ & 250 & -- & $\sim$$0.4$ & -- & $\sim$$0.9$ & -- & 3.5 & 77.4 & 4.1 \\ % \hline 1 & 0.15 & $200$ & 50 & 4.5 & 19.0 & 4.3 & 16.9 & 4.0 & 16.9 & 4.1 & 24.1 & & \\ 1 & 0.15 & $100$ & 100 & 23.0 & 6.8 & 15.0 & 13.4 & 6.5 & 17.1 & 6.7 & 18.1 & & \\ 1 & 0.15 & $40$ & 250 & -- & $\sim$$0.17$ & -- & 2.7 & 58.5 & 4.4 & 21.9 & 6.1 & & \\ % \hline 1 & 0.05 & $400$ & 25 & 3.8 & 23.9 & 3.8 & 22.6 & 3.8 & 45.0 & 3.8 & 41.1 & & \\ 1 & 0.05 & $200$ & 50 & 12.4 & 16.8 & 9.9 & 14.1 & 6.1 & 27.8 & 6.0 & 23.0 & & \\ 1 & 0.05 & $80$ & 125 & 75.6 & 4.8 & 25.3 & 8.7 & 18.5 & 11.6 & 12.0 & 15.2 & 12.0 & 12.9 \\ 1 & 0.05 & $40$ & 250 & -- & $\sim$$0.9$ & -- & 1.8 & 62.5 & 4.1 & 39.8 & 5.6 & 39.8 & 5.6 \\ 1 & 0.05 & $20$ & 500 & -- & -- & -- & -- & -- & $\sim$$0.8$ & -- & 2.4 & 99.5 & 3.1 \\ 1 & 0.05 & $8$ & 1250 & -- & -- & -- & -- & -- & -- & -- & $\sim$$0.5$ & -- & $\sim$$0.8$\\ 1 & 0.05 & $2$ & 5000 & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\ \hline \end{tabular} \vspace*{-1.5mm} \tablefoot{Same as \tabref{Tab:n2d-weak-models}, but instead of the amplification factors we give the disruption time of the KH vortex, $t_{\rm dis}$, and the absolute value of the deceleration rate, $\sigma_{{\rm dec};3} = |\sigma_{\rm dec} / 10^{-3}|$, for simulations with $m = 256, \ldots, 4096$ zones per dimension. We indicate simulations where no disruption is observed by a hyphen in the column for $t_{\rm dis}$, simulations where the determination of $\sigma_{\rm dec}$ is very inaccurate by a $\sim$ sign preceding the value of $\sigma_{{\rm dec}; 3}$, and simulations where we found no measurable deceleration by a hyphen in the column for $\sigma_{{\rm dec}; 3}$. } % \vspace*{5mm} \end{table}