\begin{table}%t7 \caption{\label{Table: max absorption}Estimated largest possible absorption intensity~$T_{\rm b}$ at different observing frequencies for {\it optically thick absorption lines} assuming that the background temperature is the~CMB.} %\centering \par \begin{tabular}{c c c c } \hline \hline \noalign{\smallskip} Obs. Freq. & \multicolumn{3}{c}{Max intensity $\mid T_{\rm b}\mid$} \\ &$ T_{\rm ex}$ = 0 & $ T_{\rm ex}$ = $0.90$ $\times$ $T_{\rm CMB}$ & $ T_{\rm ex}$ = $0.98$ $\times$ $T_{\rm CMB}$ \\ $[$GHz$]$ & [mK] & [mK] & [mK]\\ \hline 1 & 2700 & 270 & 54 \\ 50 & 1700 & 250 & 51 \\ 100 & 1000 & 210 & 42\\ 200 & 290 & 97 & 21\\ 300 & 73 & 33 & 7.5\\ 400 & 17 & 9.1 & 2.2\\ 500 & 3.6 & 2.2 & 0.6\\ 600 & 0.74 & 0.5 & 0.1\\ \hline \end{tabular} \tablefoot {We have calculated this using Eq.~(\ref{solution}) and $T_{\rm ex}$~=~0, $ T_{\rm ex}$~= $0.90$~$\times$ $T_{\rm CMB}$ and $ T_{\rm ex}$~= $0.98$~$\times$ $T_{\rm CMB}$. Note that these values are {\it redshift \mbox{independent}}.} \end{table}