\begin{table}%t1 \caption{\label{tab:d}Values of the thermal conduction parameter $d$.} %\centering \par \begin{tabular}{c c c c c c} \hline\hline $T_0$ (MK) & $d$ ($2L=50$ Mm) & $d$ ($2L=100$ Mm) & $d$ ($2L=200$ Mm) & $d$ ($2L=300$ Mm) & $d$ ($2L=400$ Mm)\\[0.5ex] \hline 1 & \phantom{1}0.0192 & 0.0096 & 0.0048 & 0.0032 & 0.0024 \\ 2 & \phantom{1}0.1533 & 0.0766 & 0.0383 & 0.0255 & 0.0192 \\ 3 & \phantom{1}0.5173 & 0.2586 & 0.1293 & 0.0862 & 0.0647 \\ 4 & \phantom{1}1.2262 & 0.6131 & 0.3065 & 0.2044 & 0.1533 \\ 5 & \phantom{1}2.3949 & 1.1974 & 0.5987 & 0.3991 & 0.2994 \\ 6 & \phantom{1}4.1383 & 2.0692 & 1.0346 & 0.6897 & 0.5173 \\ 7 & \phantom{1}6.5715 & 3.2857 & 1.6429 & 1.0953 & 0.8214 \\ 8 & \phantom{1}9.8094 & 4.9047 & 2.4523 & 1.6349 & 1.2262 \\ 9 & 13.9668 & 6.9834 & 3.4917 & 2.3278 & 1.7459 \\ 10 & 19.1589 & 9.5795 & 4.7897 & 3.1932 & 2.3949 \\ \hline \end{tabular} \tablefoot{Variations in the thermal conduction parameter $d$ with changes in temperature $T_0$ for different loop lengths $2L$. We have set the equilibrium pressure $p_0=0.055$ Pa. Also, $\gamma=5/3$, $\tilde{\mu}=0.6$ and $\kappa_0=10^{-11}$ in mks units. See also \cite{Sigalotti2007}.} \end{table}