\begin{table}%t13 \caption{\label{planeff1}Rigid Venus nutation coefficient from the indirect planetary contribution in longitude.} \par %\centering \par \begin{tabular}{crrrrr} \hline \hline \noalign{\smallskip} Planetary effects & Period & Amplitude&Amplitude&SK& SK \\ &&sin&cos&sin&cos\\ & yr &0.01 mas&0.01 mas& 0.01 mas&0.01 mas\\ \hline 2V-2E& 0.80 &31.5&--9.6&--9.6&0.0 \\ 2V-3M&0.60&19.3&4.0&/&/ \\ 3V-3E& 0.53& --2.0&13.4&0.5&--0.2 \\ V-J&0.64& 15.1&--26.2&/&/\\ V-E&1.60&--2.6&--15.3&6.6&0.0\\ & 4.11&--13.3&--38.4&/&/\\ 2V+2M+2J&0.22& 6.2&12.7&/&/\\ & 9.31&--274.5&421.0&/&/\\ & 0.20&--1.5&--2.3&/&/ \\ &0.70&--21.0&--6.5&/&/ \\ 2V-2Me& 0.19&8.5&--7.1&/&/ \\ 2V+J+M&0.25&4.6&--2.9&/&/\\ \hline \end{tabular} \tablefoot {Comparison with the respective value in tables of Souchay \& Kinoshita (1995) when we have the Earth as a indirect planetary \mbox{contribution}.} \end{table}