\begin{table}%t7 \caption{\label{ww3}Oppolzer terms in longitude depending on triaxiality.} %\centering \par \begin{tabular}{crrr} \hline \hline \noalign{\smallskip} &&Oppolzer&A.M \\ Argument & Period & $\sin(\omega t)$ &LC $sin(\omega t)$ \\ & d & arcsec & arcsec \\ &&$10^-7$&$10^-7$\\ \hline $2\Phi$ & --121.51 &--11~967~515&5~994~459 \\ $2L_{\rm S}-2\Phi$ &58.37&--3~784~751&2~880~826\\ $M+2\Phi$ & --264.6& 1~490~497&132~590\\ $M-2\Phi+2L_{\rm S}$&46.34& --66~849&54~201 \\ $M-2\Phi$ & 78.86&58~400 &--39~519 \\ $2L_{\rm S}+2\Phi$ &1490.35&5448 &--38~866 \\ $-M-2\Phi+2L_{\rm S}$&78.86& 19~476&--13~179\\ $2M+2\Phi$ & 1490.35&1062 &--7587 \\ $2M-2\Phi+2L_{\rm S}$ &38.41&--876&739\\ $2M-2\Phi$&58.37&390&--297 \\ $M +2\Phi+2L_{\rm S}$ & 195.26&67 &121 \\ $-M+2\Phi+2L_{\rm S}$&--264.66&--263&--23 \\ $2M+2\Phi+2L_{\rm S}$ &104.47&1&--1 \\ \hline \end{tabular} \tablefoot {Comparison with the corresponding nutation coefficients of the AMA in the tables of Cottereau \& Souchay (\cite{Cott09}).} \end{table}