\begin{table}%t8 \caption{\label{ww5}Oppolzer terms in obliquity depending on triaxiality.} %\centering \par \begin{tabular}{crrr} \hline \hline \noalign{\smallskip} &&Oppolzer&A.M \\ Argument & Period & $\cos(\omega t)$&CS $\cos(\omega t)$ \\ & d & arcsec&arcsec\\ &&$10^-7$&$10^-7$\\ \hline $2\Phi$ & --121.51 &555~905&--275~453 \\ $2l_{\rm S}-2\Phi$ &58.37&--173~668&132~365\\ $M +2\Phi$ & --264.6& --68~544&--6093 \\ $M -2\Phi+2L_{\rm S}$&46.34& 3074&2491\\ $2l_{\rm S}+2\Phi$ &1490.35&--250&1786 \\ $M -2\Phi$ & 78.86&2686&1816\\ $-M -2\Phi+2L_{\rm S}$&78.86& 896&--606\\ $2M +2\Phi$ & 1490.35&--49&348 \\ $2M -2\Phi+2L_{\rm S}$& 38.41&--40&35\\ $2M-2\Phi$&58.37&18&14 \\ $M +2\Phi+2L_{\rm S}$ & 195.26&--3&6 \\ $-M+2\Phi+2L_{\rm S}$&--264.6&12&1 \\ $2M +2\Phi+2L_{\rm S}$ &104.47&0&0 \\ \hline \end{tabular} \tablefoot {Comparison with the corresponding nutation coefficients of the AMA in the tables of Cottereau \& Souchay (\cite{Cott09}).} \end{table}