\begin{table}%t1 \caption{\label{tab1}$^{13}$CO(3--2) Observations and results.} %\centering \par \begin{tabular}{lc} \hline\hline\noalign{\smallskip} {Parameter}&{$^{13}$CO(3--2)}\\ \hline \multicolumn{2}{l}{{\it Observed CO(3--2) quantities:}} \\ RA (J2000) &14$^{\rm h}$ 15$^{\rm m}$ 46\ffs28 $\pm$ 0\ffs03\\ Dec (J2000) &+11$^{\circ}$ 29$'$ 44\ffas0 $\pm$ 0\ffas4 \\ Center frequency (GHz) &92.91816 \\ Redshift (LSR)\tablefootmark{a} &$2.55784\pm 0.00003$ \\ Continuum flux density (mJy)\tablefootmark{b} &$0.3\pm 0.1$ \\ Integrated $^{13}$CO flux (Jy~\kms)\tablefootmark{b} &$0.3\pm 0.1$ \\ \\ \multicolumn{2}{l}{{\it Derived CO(3--2) quantities:}} \\ $L^\prime$($^{13}$CO (\Kkmspc )\tablefootmark{c} &($1.1\pm 0.3$)$\times 10^{10}$ \\ $L^\prime$($^{12}$CO (\Kkmspc )\tablefootmark{c} &($45.9\pm 3$)$\times 10^{10}$ \\ $L^\prime$ ratio $^{12}$CO/$^{13}$CO(3--2) &40$^{+25}_{-8}$ \\ \hline \end{tabular} \tablefoot{\tablefoottext{a}{Adopted from $^{12}$CO (Weiss et~al. \cite{Weiss2003}).} \tablefoottext{b}{In a beam of 6\ffas$1\times5$\ffas4.} \tablefoottext{c}{This is the lens-amplified value for a luminosity distance of $D_L = 21.28$~Gpc ($H_0 =71$~\kms~Mpc$^{-1}$, $\Omega_{\rm m} = 0.27$, $\Omega_{\rm vac} = 0.73$) and an angular diameter distance of $D_{\rm A} = 1.682$~Gpc; linear scale: $1'' \leftrightarrow 8152$~pc (Wright \cite{Wright2006}).}} \end{table}