\begin{table}%t6 %\centering \par \caption{\label{coef_correl}Linear correlation coefficients and probability for a chance correlation between the pair of parameters plotted in Figs.~\ref{comparison_all} and~\ref{comparison_low}.} \begin{tabular}{ccccc} \hline\hline \noalign{\smallskip} Physical parameter & Linear correlation & Number of & Probability for & Linear fit \\ vs. Log($L_\odot$) & coefficient & objects & a chance correlation & slope \\ \hline Log($\alpha$) & 0.12 & 107 & 1. & -- \\ Log($R_{\rm out}$) & 0.90 & 60 & 10$^{-20}$ & 0.3 \\ Log($M_{\rm env}$) & 0.96 & 46 & 10$^{-22}$ & 1.3 \\ Log($n_{1000~{\rm AU}}$) & 0.72 & 56 & 10$^{-8}$ & 0.3 \\ Log($\langle n \rangle $) & 0.25 & 39 & 0.4 & -- \\ Log($n_{10{\rm K}}$) & --0.26 & 18 & 0.5 & -- \\ Log($\theta$) & 0.88 & 60 & 10$^{-19}$ & --$6 \times 10^{-3}$ \\ \hline \end{tabular} \end{table}