\begin{table}%T2 \par \caption{\label{ta:results:sigma8}Constraints on $\sigma_8\left(\Omega_{\rm m}/0.3\right)^{\alpha}$, $\Omega_{\rm m}$, $\Omega_{\rm DE}$, and $w$ from the COSMOS data for different cosmological models and analysis schemes. %, using our default priors. %We quote the marginalized mean and 68.3\% confidence limits (16th and 84th percentiles) %assuming non-linear power spectrum corrections according to \citet{spj03} and the description given in Sect.~\ref{se:constraints:modelcalc}. %Our analysis of the Millennium Simulation %(Sect.~\ref{se:cosmo:constraints:mr:wmap}) suggests that the %$\sigma_8$-estimates should be reduced by a factor $\times 0.95$ due to %biased model predictions for the non-linear power spectrum and reduced shear %corrections. %The power-law slopes $\alpha$ have typical fit uncertainties of \mbox{$\sigma_\alpha\simeq 0.02$}. } \small%\centering \par \begin{tabular} {lllllll} \hline\hline\noalign{\smallskip} Cosmology & Analysis & $\alpha$ & $\sigma_8\left(\Omega_{\rm m}/0.3\right)^{\alpha}$ & $\Omega_{\rm m}$ & $\Omega_{\rm DE}$ & $w$\\ \hline Flat $\Lambda$CDM & 3D & $0.51$ & $0.79\pm 0.09$ & $\rm 0.32^{+0.34}_{-0.11}$ & $\rm 0.68^{+0.11}_{-0.34}$ & $-1$\\ Flat $\Lambda$CDM & 2D & $0.62$ & $0.68\pm 0.11$ & $\rm 0.30^{+0.44}_{-0.15}$ & $\rm 0.70^{+0.15}_{-0.44}$ & $-1$\\ General $\Lambda$CDM & 3D & $0.77$ & $0.74\pm 0.12$ & $\rm 0.43^{+0.40}_{-0.19}$ & $\rm 0.97^{+0.39}_{-0.60}$ & $-1$\\ Flat $w$CDM & 3D & $0.47$ & $0.79\pm 0.09$ & $\rm 0.30^{+0.39}_{-0.11}$ & $\rm 0.70^{+0.11}_{-0.39}$ & $\rm -1.23^{+0.79}_{-0.50}$\\ \noalign{\smallskip}\hline \end{tabular} \tablefoot{Here we use our default priors and quote the marginalized mean and 68.3\% confidence limits (16th and 84th percentiles) assuming non-linear power spectrum corrections according to \citet{spj03} and the description given in Sect.~\ref{se:constraints:modelcalc}. Our analysis of the Millennium Simulation (Sect.~\ref{se:cosmo:constraints:mr:wmap}) suggests that the $\sigma_8$-estimates should be reduced by a factor $\times$0.95 due to biased model predictions for the non-linear power spectrum and reduced shear corrections. The power-law slopes $\alpha$ have typical fit uncertainties of \mbox{$\sigma_\alpha\simeq 0.02$}.} \vspace*{6mm} \end{table}