\begin{table}%t2 \caption{\label{frac:star}Fraction of $HK_{\rm s}L$ sources with a NIR excess. We also list the fraction derived by selecting only $HK_{\rm s}L$ sources whose $K_{\rm s}$, after correction for reddening as explained in Sect.~\ref{frac:def} ($K_{\rm dered}$), is less than given thresholds (the selection criteria for $L$ and $K_{\rm dered}$ are indicated in the first line).} %\centering \par \begin{tabular}{c c c c c c c c} \hline\hline \noalign{\smallskip} & \multicolumn{2}{c}{$L < L_{\rm compl}''$} & \multicolumn{2}{c}{$L < L_{\rm compl}$} & \multicolumn{2}{c}{$L < L_{\rm compl}$ and $K_{\rm dered} < 14$} & \multicolumn{1}{c}{$L < L_{\rm compl}$ and $K_{\rm dered} < 11$} \\ Field & Fraction & Fraction & Fraction & Fraction & Fraction & Fraction & Fraction \\ % table heading name & corrected & uncorrected & corrected & uncorrected & corrected & uncorrected & uncorrected \\ \hline % inserts single horizontal line IRS16 & $0.74 \pm 0.18$ & $0.65 \pm 0.16$ & $0.65 \pm 0.13$ & $0.60 \pm 0.11$ & $0.60 \pm 0.12$ & $0.56 \pm 0.11$ & $0.46 \pm 0.25$ \\ IRS17 & $0.93 \pm 0.30$ & $0.65 \pm 0.23$ & $0.66 \pm 0.18$ & $0.57 \pm 0.15$ & $0.59 \pm 0.16$ & $0.50 \pm 0.14$ & $0.56 \pm 0.31$ \\ IRS18 & $0.73 \pm 0.13$ & $0.68 \pm 0.13$ & $0.66 \pm 0.11$ & $0.63 \pm 0.10$ & $0.62 \pm 0.11$ & $0.59 \pm 0.10$ & $0.43 \pm 0.21$ \\ IRS20 & $0.91 \pm 0.28$ & $0.68 \pm 0.23$ & $0.73 \pm 0.17$ & $0.63 \pm 0.15$ & $0.66 \pm 0.17$ & $0.56 \pm 0.15$ & $0.25 \pm 0.28$ \\ IRS21 & $0.69 \pm 0.22$ & $0.52 \pm 0.19$ & $0.49 \pm 0.12$ & $0.43 \pm 0.11$ & $0.46 \pm 0.11$ & $0.41 \pm 0.11$ & $0.29 \pm 0.16$ \\ IRS22 & $0.87 \pm 0.24$ & $0.66 \pm 0.20$ & $0.69 \pm 0.16$ & $0.62 \pm 0.13$ & $0.67 \pm 0.15$ & $0.60 \pm 0.14$ & $0.50 \pm 0.22$ \\ \hline %inserts single line \end{tabular} \vspace*{2.8mm} \end{table}