\begin{table}%t2 \caption{\label{tab2}System parameters as a function of mass ratio $q$.} %\centerline { \begin{tabular}{lllllrrrr} \hline \hline $q$ &$r/A$ &$r_{\rm C}/A$ &$a_{\rm r}/A$ &$a_{\rm b}/A$ &$r_{\rm L}/A$ &$M_{\rm X}$ &$M_{\rm S}$ &$A$ \\ \hline 1.1 &0.14 &0.28 &0.255 &0.32 &0.37 &37 &71 &6.6 \\ 1.0 &0.125 &0.27 &0.250 &0.31 &0.38 &31 &62 &6.3 \\ 0.9 &0.105 &0.26 &0.245 &0.30 &0.39 &25 &53 &6.0 \\ 0.8 &0.09 &0.25 &0.242 &0.29 &0.40 &20 &45 & 5.7 \\ 0.7 &0.075 &0.24 &0.240 &0.28 &0.41 &16 &38 &5.4 \\\hline \end{tabular}} \tablefoot{The quantity $r$ is the radius at which the orbital disk speed is 700~km~s$^{-1}$; $M_{\rm X}$ the mass of the compact object. $a_{\rm r}$ is the upper limit to the radius of the companion for the red side of the disk to be visible on JD~+307.5; $a_{\rm b}$ for the blue. $M_{\rm S}$ is the mass of the system, masses in units of~$M_\odot$. The binary separation $A$ is in units of 10$^7$ km.} \end{table}