\begin{table}%t1 %\centering \par \caption{\label{tab:comp}95\% completeness flux density and photometric noise for different depths at different wavelengths.} \begin{tabular}{lrrrrrrrr} \hline\hline\noalign{\smallskip}%\cline{2-9} \multicolumn{1}{c}{} & \multicolumn{2}{c}{95\% completeness} & \multicolumn{2}{c}{Instrumental noise} & \multicolumn{2}{c}{Total photometric noise} & \multicolumn{2}{c}{Deduced confusion noise} \\ \cline{2-9} \multicolumn{1}{c}{} & \multicolumn{2}{c}{mJy} & \multicolumn{2}{c}{mJy} & \multicolumn{2}{c}{mJy} & \multicolumn{2}{c}{mJy}\\ \cline{2-9} \multicolumn{1}{c}{} & Shallow & Deep & Shallow & Deep & Shallow & Deep & Shallow & Deep\\ \hline 250~$\mu$m & 203 & 97 & 37.7 & 11.1 & 47.3 & 24.9 & 28.6 & 22.3\\ 350~$\mu$m & 161 & 83 & 31.6 & 9.3 & 35.8 & 20.3 & 16.8 & 18.0\\ 500~$\mu$m & 131 & 76 & 20.4 & 6.0 & 26.4 & 17.6 & 16.7 & 16.5\\ \hline \end{tabular} \tablefoot{The instrumental noise is given by the noise map. The total photometric noise includes the instrumental and confusion noise and is determined by Monte-Carlo simulations. The confusion noise is computed with the formula $\sigma_{\rm conf} = \sqrt{\sigma_{\rm tot}^2-\sigma_{\rm instr}^2}$.} \end{table}