\begin{table}%t5 \caption{\label{tab:Kxx_diff_cases}$K(E)$ and $K_{\rm pp}$ for different schemes.} %\centering \par \begin{tabular}{llcc} \hline\hline\noalign{\smallskip} \multicolumn{2}{l}{Type of turbulence}& $\eta_{\rm T}$ & $\frac{K_{\rm pp} K_{\rm xx}}{4/3~ p^2V_{\rm a}^2}$ \vspace{0.10cm} \\\hline & \multicolumn{1}{c}{} \vspace{-0.20cm} \\ LBI&Leaky Box Inspired & 0 & $\frac{1}{\delta~(4-\delta^2)~(4-\delta)}$ \vspace{0.15cm} \\ {\it SA}&{\it Slab Alfv\'en} & {\it 1} & $\frac{1}{\delta~(4-\delta^2)~(4-\delta)}$ \vspace{0.15cm} \\ IFM&Isotropic fast magnetosonic & ${2-\delta}$ & $\beta^{1-\delta} \ln (\frac{v}{V_{\rm a}})$ \vspace{0.15cm} \\ Mix& Mixture SA and IFM & ${1-\delta}$ & $\beta^{1-\delta} \ln (\frac{v}{V_{\rm a}})$ \vspace{0.1cm} \\ \hline \end{tabular} \tablefoot{The spatial diffusion coefficient is $K_{\rm xx}= \beta^{\eta_{\rm T}} \cdot K_0 \cdot {\cal R}^\delta$.\vspace{-0.25cm}} \end{table}