\begin{table}%t3 %\centering \par \caption{\label{tab_PM}Gaussian fit parameters.} %\tiny \renewcommand{\tabcolsep}{0.65mm} \par \begin{tabular}{lccccc} \hline\hline Cluster&$\overline{\mu_\alpha~\cos(\delta)}$&$\sigma_\alpha$&$\overline{\mu_\delta}$& $\sigma_\delta$&$\sigma_{\rm v}$\\ &(\kms)&(\kms)&(\kms)&(\kms)&(\kms)\\ \hline Cr~197&$-22.2\pm4.1$&$10.2\pm3.7$&$-8.1\pm4.0$&$14.4\pm4.3$&$22\pm5$\\ \par Cr~197&$-48.5\pm5.0$&$6.6\pm3.6$&$+30.6\pm2.1$&$9.9\pm1.8$&$15\pm3$\\ \par vdB~92&$-18.0\pm1.6$&$11.1\pm1.3$&$+14.5\pm2.1$&$13.1\pm1.7$&$21\pm2$\\ \par \hline \end{tabular} \tablefoot{$\sigma_\alpha$ and $\sigma_\delta$ are the velocity dispersions in right ascension and declination, respectively. Assuming spherical symmetry, we define $\sigma_{\rm v}^2=\frac{3}{2}(\sigma_\alpha^2+\sigma_\delta^2)$.} %\vspace*{1.5mm} \end{table}