\begin{table}%t4 %\centering \par \caption{\label{tab:abun}Average total gas column densities and fractional abundances of CH$_3$OH.} \begin{tabular}{l r r r r r r} \hline\hline \noalign{\smallskip} Source & $N_{\rm DUSTY}^a$ & $N_{\rm SCUBA}^b$ & $x$(CH$_3$OH)$_{\rm DUSTY}^c$ & $x$(CH$_3$OH)$_{\rm SCUBA}^c$ & $x$(CH$_3$OH)$_{\rm out}^{c,d}$ & $x$(CH$_3$OH)$_{\rm in}^{c,d}$\\ & (10$^{23}$~cm$^{-2})$ & (10$^{23}$~cm$^{-2}$) & $\times10^{-9}$ & $\times$$10^{-9}$ & $\times$$10^{-9}$ & $\times$$10^{-8}$ \\ \hline SMM1 & 1.3 & $3.5 \pm 0.3$ & $3.6 \pm 0.9$ & $1.3 \pm 0.4$ & 1 & $\le$0.3 \\ SMM3 & 0.83 & $2.0 \pm 0.13$ & 2.8$\pm$0.7 & 1.2$\pm$0.3 & 4 & $\le$50 \\ SMM4 & 1.1 & $1.2 \pm 0.07$ & 13$\pm$3 & 12$\pm$3 & 5 & $\le$5 \\ S68N & 1.2 & $1.7 \pm 0.10$ & 28$\pm$2 & 21$\pm$2 & 10 & $\le$40 \\ \hline \end{tabular} \tablefoot{\tablefoottext{a}{Gas column density, $N$(H$_2$), obtained from D{\sc usty} modelling over a region of $22\farcs5 \times 22\farcs5$ assuming a gas:dust ratio of 100.} \tablefoottext{b}{Gas column density, $N$(H$_2$),obtained from SCUBA emission at 850~$\mu$m assuming a constant dust temperature of 20~K.} \tablefoottext{c}{Fractional CH$_3$OH abundance summed over A- and E-type CH$_3$OH.} \tablefoottext{d}{Inner and outer abundance in the R{\sc atran} jump-model.}} \end{table}