\begin{table}%t3 \caption{\label{tab:res}Fitting results for the active black hole mass function and the Eddington ratio distribution function.} %\centering \par \begin{tabular}{llrrrrrrrrrrr} \hline \hline %\noalign{\smallskip} \multicolumn{12}{c}{}& \multicolumn{1}{c}{$\rho_{\rm act}$} \\ BHMF & ERDF & $\phi_\bullet^\ast$ [Mpc$^{-3}$] & $\log M_\ast$ & $\alpha_{\rm BH}$ & $\beta_{\rm BH}$ & $\log \er_\ast$ & $\alpha_\er$/$\sigma_\er$ & $D_{\rm KS}$ & $p_{\rm KS}$ & $\chi^2$/d.o.f. & $p_{\chi^2}$ & \multicolumn{1}{c}{[$M_\odot~{\rm Mpc}^{-3}$]} \\ \noalign{\smallskip} \hline \noalign{\smallskip} DPL($\beta$) & S & $2.97\times 10^{-6}$ & 7.97 & $-$2.11 & $-$3.11 & $-$0.57 & $-$1.90 & 0.100 & 2.8e$-$2 & 61.3/25 & 4.2e$-$5 & 1621 \\ \noalign{\smallskip} DPL & S & $2.86\times 10^{-6}$ & 8.01 & $-$2.10 & $-$3.21 & $-$0.56 & $-$1.94 & 0.101 & 2.6e$-$2 & 63.4/25 & 2.1e$-$5 & 1687 \\ \noalign{\smallskip} mS & S & $2.75\times 10^{-6}$ & 8.11 & $-$2.11 & 0.50 & $-$0.55 & $-$1.95 & 0.094 & 4.8e$-$2 & 56.8/25 & 1.8e$-$4 & 1767 \\ \noalign{\smallskip} mS & ln & $2.36\times 10^{-6}$ & 8.07 & $-$2.12 & 0.48 & $-$1.83 & 0.49 & 0.081 & 1.2e$-$1 & 50.8/25 & 1.1e$-$3 & 1388 \\ \noalign{\smallskip} \hline \end{tabular} \tablefoot{The first column indicates the function used for the BHMF. ``DPL'' is for a double power law, with $\beta$ indicating the fixing of the high mass slope and ``mS'' is for a modified Schechter function. The second column indicates the ERDF. ``S'' is for a Schechter function and ``ln'' stands for a log-normal distribution.}\vspace*{-2mm} \end{table}