\begin{table}%t4 \caption{\label{Tab:V:Cr:tar-str}The lowest $\Delta n_{{\rm c}} = 0$ core excitation thresholds (in Rydbergs) for \ion{V}{vi} and \ion{Cr}{vii}.} %\centering \par \begin{tabular}{r l l l r r c l l r r} % 11 columns \hline \hline\noalign{\smallskip} %\multicolumn{11}{c}{\vspace*{-2mm}} \\ & & \multicolumn{4}{c}{${\rm V}^{5+}$} & & \multicolumn{4}{c}{${\rm Cr}^{6+}$} \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ %\cline{3-6}\cline{8-11} %\multicolumn{11}{c}{\vspace*{-2mm}} \\ K & Config. & Level(mix) & Present\tablefootmark{a} & NIST\tablefootmark{b} & MCHF\tablefootmark{c} & & Level(mix) & Present\tablefootmark{a} & NIST\tablefootmark{b} & MCHF\tablefootmark{c} \\ \hline %\multicolumn{11}{c}{\vspace*{-2mm}} \\ %K Configuration Level Present NIST MCHF 1 & $\rm 3s^{2}3p^{6} $ & $\rm {}^{1}\hspace*{-.5mm}S_{0}~(96.4\%)$ & $0.000000$ & $0.000000$ & $0.000000$ & & $\rm {}^{1}\hspace*{-.5mm}S_{0}~(96.6\%)$ & $0.000000$ & $0.000000$ & $0.000000$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 2 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{0}^{{\rm o}}~(97.0\%)$ & $2.739060$ & $2.808068$ & $2.806866$ & & $\rm {}^{3}\hspace*{-.5mm}P_{0}^{{\rm o}}~(97.1\%)$ & $3.059906$ & $3.109055$ & $3.110232$ \\ 3 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.9\%)$ & $2.748293$ & $2.819413$ & $2.818090$ & & $\rm {}^{3}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.9\%)$ & $3.072680$ & $3.123582$ & $3.124881$ \\ 4 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{2}^{{\rm o}}~(96.7\%)$ & $2.767020$ & $2.842952$ & $2.841350$ & & $\rm {}^{3}\hspace*{-.5mm}P_{2}^{{\rm o}}~(96.6\%)$ & $3.098672$ & $3.154233$ & $3.155270$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 5 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{4}^{{\rm o}}~(97.3\%)$ & $2.896923$ & $2.941329$ & $2.944497$ & & $\rm {}^{3}\hspace*{-.5mm}F_{4}^{{\rm o}}~(97.4\%)$ & $3.234927$ & $3.258178$ & $3.264649$ \\ 6 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{3}^{{\rm o}}~(96.2\%)$ & $2.906694$ & $2.961235$ & $2.963277$ & & $\rm {}^{3}\hspace*{-.5mm}F_{3}^{{\rm o}}~(95.7\%)$ & $3.247762$ & $3.282128$ & $3.287197$ \\ 7 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{2}^{{\rm o}}~(96.6\%)$ & $2.917192$ & $2.981802$ & $2.982698$ & & $\rm {}^{3}\hspace*{-.5mm}F_{2}^{{\rm o}}~(96.2\%)$ & $3.262960$ & $3.308454$ & $3.312214$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 8 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}D_{2}^{{\rm o}}~(71.5\%)$ & $3.110770$ & $3.145142$ & $3.152963$ & & $\rm {}^{1}\hspace*{-.5mm}D_{2}^{{\rm o}}~(67.4\%)$ & $3.470531$ & $3.487258$ & $3.497713$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 9 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{3}^{{\rm o}}~(78.2\%)$ & $3.119456$ & $3.148578$ & $3.156780$ & & $\rm {}^{3}\hspace*{-.5mm}D_{3}^{{\rm o}}~(72.3\%)$ & $3.478260$ & $3.487760$ & $3.499169$ \\ 10 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{1}^{{\rm o}}~(96.8\%)$ & $3.126389$ & $3.170297$ & $3.176499$ & & $\rm {}^{3}\hspace*{-.5mm}D_{1}^{{\rm o}}~(96.8\%)$ & $3.489568$ & $3.515926$ & $3.525054$ \\ 11 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{2}^{{\rm o}}~(71.6\%)$ & $3.132258$ & $3.174174$ & $3.180891$ & & $\rm {}^{3}\hspace*{-.5mm}D_{2}^{{\rm o}}~(71.8\%)$ & $3.499112$ & $3.523110$ & $3.532855$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 12 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}F_{3}^{{\rm o}}~(77.6\%)$ & $3.145710$ & $3.195308$ & $3.203371$ & & $\rm {}^{1}\hspace*{-.5mm}F_{3}^{{\rm o}}~(71.3\%)$ & $3.512852$ & $3.546890$ & $3.557753$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 13 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}P_{1}^{{\rm o}}~(95.4\%)$\tablefootmark{\bigstar} & $4.059132$ & $4.059108$ & $4.114305$ & & $\rm {}^{1}\hspace*{-.5mm}P_{1}^{{\rm o}}~(95.6\%)$\tablefootmark{\bigstar} & $4.492846$ & $4.492869$ & $4.553079$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 14 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{1}~(69.1\%)$ & $5.013754$ & $5.007759$ & $5.122273$ & & $\rm {}^{3}\hspace*{-.5mm}D_{1}~(71.9\%)$ & $5.547059$ & $5.546697$ & $5.667028$ \\ 15 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{2}~(69.1\%)$ & $5.017989$ & $5.010726$ & $5.124985$ & & $\rm {}^{3}\hspace*{-.5mm}D_{2}~(71.8\%)$ & $5.552838$ & $5.550917$ & $5.670942$ \\ 16 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{3}~(69.2\%)$ & $5.024692$ & $5.015474$ & $5.129131$ & & $\rm {}^{3}\hspace*{-.5mm}D_{3}~(72.0\%)$ & $5.562141$ & $5.557707$ & $5.676969$ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 17 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{1}\hspace*{-.5mm}D_{2}~(63.6\%)$ & $5.191350$ & $5.161717$ & $5.318685$ & & $\rm {}^{1}\hspace*{-.5mm}D_{2}~(66.4\%)$ & $5.742414$ & $5.721178$ & $5.883764$ \\ \hline \end{tabular} \tablefoot{\tablefoottext{a}{present work: 2894-level MCBP results;} \tablefoottext{b}{critically compiled experimental data of \cite{Shirai:2000};} \tablefoottext{c}{MCHF results of \cite{Irimia:2003};} \tablefoottext{\bigstar}{dominant excitation threshold - see Table~\ref{Tab:tar-rad}.} }\vspace*{2.4mm} \end{table}