\begin{table}%t7 \caption{\label{Tab:Cu:Zn:tar-str}The lowest $\Delta n_{{\rm c}} = 0$ core excitation thresholds (in Rydbergs) for \ion{Cu}{xii} and \ion{Zn}{xiii}. Uncertainties are enclosed in lower parentheses.} %\centering \par \begin{tabular}{r l l l r r c l l r r} % 11 columns \hline \hline %%\multicolumn{11}{c}{\vspace*{-2mm}} \\ & & \multicolumn{4}{c}{${\rm Cu}^{11+}$} & & \multicolumn{4}{c}{${\rm Zn}^{12+}$} \\ %%\multicolumn{11}{c}{\vspace*{-2mm}} \\ \cline{3-6}\cline{8-11} %\multicolumn{11}{c}{\vspace*{-2mm}} \\ K & Config. & Level(mix) & Present\tablefootmark{a} & NIST\tablefootmark{b} & MCHF\tablefootmark{c} & & Level(mix) & Present\tablefootmark{a} & NIST\tablefootmark{b} & MCHF\tablefootmark{c} \\ \hline %\multicolumn{11}{c}{\vspace*{-2mm}} \\ %K Configuration Level Present NIST MCHF 1 & $\rm 3s^{2}3p^{6} $ & $\rm {}^{1}\hspace*{-.5mm}S_{0}~(97.2\%)$ & $0.000000$ & $0.000000 $ & $0.000000 $ & & $\rm {}^{1}\hspace*{-.5mm}S_{0}~(97.3\%)$ & $0.00000 $ & $0.00000 $ & $0.00000 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 2 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{0}^{{\rm o}}~(97.7\%)$ & $4.56676 $ & $4.603_{(36)}$\tablefootmark{\S}& $4.19956 $ & & $\rm {}^{3}\hspace*{-.5mm}P_{0}^{{\rm o}}~(97.7\%)$ & $4.85185 $ & $4.905_{(38)}$\tablefootmark{\S}& $4.43697 $ \\ 3 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.6\%)$ & $4.60819 $ & $4.638_{(32)}$\tablefootmark{\S}& $4.24146 $ & & $\rm {}^{3}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.3\%)$ & $4.90147 $ & $4.943_{(35)}$\tablefootmark{\S}& $4.48650 $ \\ 4 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}P_{2}^{{\rm o}}~(94.4\%)$ & $4.69378 $ & $4.711_{(25)}$\tablefootmark{\S}& $4.32844 $ & & $\rm {}^{3}\hspace*{-.5mm}P_{2}^{{\rm o}}~(93.4\%)$ & $5.00416 $ & $5.025_{(27)}$\tablefootmark{\S}& $4.58924 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 5 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{4}^{{\rm o}}~(97.9\%)$ & $4.83899 $ & $4.837_{(36)}$\tablefootmark{\S}& $4.44807 $ & & $\rm {}^{3}\hspace*{-.5mm}F_{4}^{{\rm o}}~(97.9\%)$ & $5.14710 $ & $5.156_{(38)}$\tablefootmark{\S}& $4.70801 $ \\ 6 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{3}^{{\rm o}}~(89.6\%)$ & $4.86273 $ & $4.880_{(35)}$\tablefootmark{\S}& $4.48537 $ & & $\rm {}^{3}\hspace*{-.5mm}F_{3}^{{\rm o}}~(87.7\%)$ & $5.17130 $ & $5.203_{(38)}$\tablefootmark{\S}& $4.74554 $ \\ 7 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}F_{2}^{{\rm o}}~(88.5\%)$ & $4.92015 $ & $4.941_{(29)}$\tablefootmark{\S}& $4.55309 $ & & $\rm {}^{3}\hspace*{-.5mm}F_{2}^{{\rm o}}~(84.9\%)$ & $5.24156 $ & $5.270_{(31)}$\tablefootmark{\S}& $4.82380 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 8 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}D_{2}^{{\rm o}}~(57.2\%)$ & $5.19405 $ & $5.203_{(34)}$\tablefootmark{\S}& $4.82348 $ & & $\rm {}^{1}\hspace*{-.5mm}D_{2}^{{\rm o}}~(55.4\%)$ & $5.53462 $ & $5.548_{(36)}$\tablefootmark{\S}& $5.12106 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 9 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{3}^{{\rm o}}~(59.8\%)$ & $5.17774 $ & $5.177_{(44)}$\tablefootmark{\S}& $4.78044 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{3}^{{\rm o}}~(59.6\%)$ & $5.50490 $ & $5.519_{(47)}$\tablefootmark{\S}& $5.05792 $ \\ 10 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{1}^{{\rm o}}~(96.2\%)$ & $5.23130 $ & $5.21500 $ & $4.86330 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{1}^{{\rm o}}~(95.8\%)$ & $5.57297 $ & $5.55700 $ & $5.15855 $ \\ 11 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{2}^{{\rm o}}~(59.4\%)$ & $5.28354 $ & $5.280_{(32)}$\tablefootmark{\S}& $4.91565 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{2}^{{\rm o}}~(58.7\%)$ & $5.64097 $ & $5.633_{(35)}$\tablefootmark{\S}& $5.22837 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 12 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}F_{3}^{{\rm o}}~(54.3\%)$ & $5.30733 $ & $5.320_{(29)}$\tablefootmark{\S}& $4.95778 $ & & $\rm {}^{1}\hspace*{-.5mm}F_{3}^{{\rm o}}~(52.7\%)$ & $5.67000 $ & $5.676_{(31)}$\tablefootmark{\S}& $5.27605 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 13 & $\rm 3s^{2}3p^{5}3d$ & $\rm {}^{1}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.2\%)$\tablefootmark{\bigstar} & $6.54764 $ & $6.54764 $ & $6.24830 $ & & $\rm {}^{1}\hspace*{-.5mm}P_{1}^{{\rm o}}~(96.1\%)$\tablefootmark{\bigstar} & $6.95380 $ & $6.95379 $ & $6.60700 $ \\ & & & & & $6.346 ^{{\rm d}}$& & & & & $6.7154^{{\rm d}}$\\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 14 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{1}~(75.6\%)$ & $8.29610 $ & $8.268_{(27)}$\tablefootmark{\S}& $8.04518 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{1}~(75.9\%)$ & $8.82751 $ & $8.814_{(29)}$\tablefootmark{\S}& $8.56194 $ \\ 15 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{2}~(74.9\%)$ & $8.31511 $ & $8.277_{(36)}$\tablefootmark{\S}& $8.06020 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{2}~(75.1\%)$ & $8.85018 $ & $8.822_{(38)}$\tablefootmark{\S}& $8.58042 $ \\ 16 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{3}\hspace*{-.5mm}D_{3}~(75.9\%)$ & $8.34975 $ & $8.291_{(36)}$\tablefootmark{\S}& $8.08529 $ & & $\rm {}^{3}\hspace*{-.5mm}D_{3}~(76.3\%)$ & $8.89283 $ & $8.838_{(39)}$\tablefootmark{\S}& $8.61207 $ \\ %\multicolumn{11}{c}{\vspace*{-2mm}} \\ 17 & $\rm 3s^{ }3p^{6}3d$ & $\rm {}^{1}\hspace*{-.5mm}D_{2}~(70.1\%)$ & $8.57720 $ & $8.538_{(39)}$\tablefootmark{\S}& $8.35116 $ & & $\rm {}^{1}\hspace*{-.5mm}D_{2}~(70.3\%)$ & $9.12726 $ & $9.102_{(42)}$\tablefootmark{\S}& $8.88624 $ \\ \hline \end{tabular} \tablefoot {\tablefoottext{a}{present work: 2894-level MCBP results;} \tablefoottext{b}{critically compiled experimental data of \cite{Shirai:2000};} \tablefoottext{c}{MCHF results of \cite{Irimia:2003};} \tablefoottext{\S}{extrapolated along the isoelectronic sequence;} \tablefoottext{\bigstar}{dominant excitation threshold -- see Table~\ref{Tab:tar-rad};} \tablefoottext{d}{single configuration TDCHF results of \cite{Ghosh:1997}.}}\vspace*{0.25mm} \end{table}