\begin{table}%t1 \caption{\label{table0}The stellar mass fraction $f_{\ast}(t)$ after gas recycling, as~a~function of population age for different IMFs of power-law form (${\rm d}n/{\rm d} \log M \propto M^{-m}$), and the~$L_{\rm IR}$ to $\it SFR$ calibration.} %\centering \par \begin{tabular}{ c c c c c c c} \hline \hline \noalign{\smallskip} age & Scalo & Kroupa & Salpeter & Top-heavy 1 & Top-heavy 2 & Top-heavy 3 \\ Gyr & (1986)& (1993) & $m=1.35$ & $m=1.15$ & $m=1.0$ & $m=0.85$ \\ \hline 0.01 & 0.98 & 0.97 & 0.90 & 0.87 & 0.83 & 0.60 \\ 0.05 & 0.94 & 0.92 & 0.85 & 0.74 & 0.62 & 0.53 \\ 0.1 & 0.92 & 0.90 & 0.83 & 0.70 & 0.58 & 0.44 \\ 1.0 & 0.86 & 0.81 & 0.75 & 0.61 & 0.48 & 0.35 \\ 3.0 & 0.80 & 0.75 & 0.72 & 0.57 & 0.44 & 0.32 \\ 7.0 & 0.75 & 0.72 & 0.70 & 0.56 & 0.42 & 0.31 \\ 10. & 0.73 & 0.70 & 0.65 & 0.55 & 0.41 & 0.30 \\ 15. & 0.71 & 0.69 & 0.65 & 0.54 & 0.40 & 0.30 \\ \hline \noalign{\smallskip} $\frac{{\it SFR}\ [M_\odot/{\rm yr}]}{L_{\rm IR}/L_\odot}$ & $3.3 \times 10^{-10}$ & $2.2 \times 10^{-10}$ & $1.63 \times 10^{-10}$ & $1.01 \times 10^{-10}$ & $0.63 \times 10^{-10}$ & $0.46 \times 10^{-10}$ \\[3pt] \hline \end{tabular} \vspace*{5mm} \end{table}