\begin{table}%t1 %\centering \par \caption{\label{t1}The results of determination of the relative SED of the variable source.} \begin{tabular}{c c c c c c c c } \hline\hline \noalign{\smallskip} Band & log $\nu$ & $r_{iR} \pm 1\sigma$ & $(F_{i}/F_{R})^{{\rm obs}} \pm 1\sigma$ & $(F_{i}/F_{R})^{{\rm obs},~ 1} \pm 1\sigma$ & $(F_{i}/F_{R})^{{\rm obs},~ 2} \pm 1\sigma$ & $(F_{i}/F_{R})^{{\rm corr}} \pm 1\sigma$ & $\log(F_{i}/F_{R})^{{\rm corr}} \pm \sigma$ \\ 1& 2& 3& 4& 5& 6 & 7 & 8\\ \hline $B$ & 14.833 & $0.926\pm0.054$ & $0.610\pm0.036$ & $0.729\pm0.057$ & $0.538\pm0.051$ & $0.643\pm0.038$ & $-0.192\pm0.025$\\ $V$ & 14.736 & $0.941\pm0.022$ & $0.786\pm0.017$ & $0.816\pm0.031$ & $0.802\pm0.024$ & $0.802\pm0.017$ & $-0.096\pm0.009$ \\ $I$ & 14.574 & $0.975\pm0.014$ & $1.382\pm0.014$ & $1.437\pm0.031$ & $1.411\pm0.022$ & $1.350\pm0.014$ & $0.130\pm0.005$ \\ \hline \end{tabular} \tablefoot{(3) -- Correlation coefficient between fluxes and its error, all values of {\it r} are near~1. (4--6) -- Observed SEDs of the variable source (4 -- all the data, 5 -- event~1, 6 -- event~2). (7) -- Corrected SED of the variable source (all the data). (8) -- The same in logarithmic scale.} \end{table}