\begin{table}%t5 %\centering \par \caption {\label{table:dustgas1}Power-law relations and correlation coefficients $r_{\rm c}$ between dust extinction and gas components. } \begin{tabular}{ l l l l l l l l} \hline\hline \noalign{\smallskip} $X$ & $Y$ & $R$ & ~~~~~~ $a_{\rm c}$ &~~~~~~ $b$ & $n$ & ~~~~~~ $r_{\rm c}$ & $t$\\ ($10^{18}$ at~cm$^{-2}$)& (mag) & ($\arcmin$) &&&&& \\ \hline $N$(2H$_2$) & $A_{\rm H\alpha}$ & 0--30 & --1.88~$\pm$~0.06 & 0.53~$\pm$~0.03 & 207& 0.60~$\pm$~0.06 & 11\\ & & 30--50 & --1.83~$\pm$~0.04 & 0.52~$\pm$~0.02 & 610 & 0.64~$\pm$~0.03 & 20 \\ & & 0--50 & --1.85~$\pm$~0.03 & 0.52~$\pm$~0.01 & 817 & 0.63~$\pm$~0.03 & 23\\ & & & & & & &\\ \par $N$(HI) & A$_{\rm H\alpha}$ & 0--30 & --3.29~$\pm$~0.11 & 0.94~$\pm$~0.04 & 354 & 0.69$\pm$0.04& 18\\ & & 30--50 & --3.26~$\pm$~0.07 & 0.84~$\pm$~0.02 & 768 & 0.72~$\pm$~0.03 & 29\\ &&&&&&&\\ $N$(gas) & A$_{\rm H\alpha}$ & 0--30 & --2.97~$\pm$~0.08 & 0.79~$\pm$~0.03 & 350 & 0.80~$\pm$~0.03 & 25\\ & & 30--50 & --3.05~$\pm$~0.06 & 0.76~$\pm$~0.02 & 766 & 0.77~$\pm$~0.02 & 33\\ \hline \end{tabular} \tablefoot {Ordinary least-squares fits of bisector log~($Y$)~=~$a_{\rm c}+b$~log~($X$) through $n$ pairs of (log~$X$, log~$Y$), where $n$ is the number of independent points (Isobe et~al. 1990); $t$ is the student-t test.} \end{table}