\begin{table}%t8 %\centering \par \caption{\label{table:KS}Kennicutt-Schmidt law in three radial intervals in M~31.} \begin{tabular}{ l l l l l l l } \hline\hline \noalign{\smallskip} ~~~$R$(kpc) & ~~\ X &~~~~~~ $a_{\rm c}$ & ~~~~~~ $b$ & $n$ & ~~~~~~ $r_{\rm c}$& $t$\\ \hline 7--9 & $\Sigma_{\rm GAS}$ & --0.90~$\pm$~0.04 &1.03~$\pm$~0.06 & 216 & 0.54~$\pm$~0.06 & 9 \\ 9--11 & & --1.43~$\pm$~0.06 & 1.67~$\pm$~0.08 & 356 & 0.63~$\pm$~0.04 & 15 \\ 11--13 & & --1.46~$\pm$~0.06 & 1.55~$\pm$~0.08 & 297 & 0.62~$\pm$~0.05& 13 \\ &&&& & &\\ 7--9 & $n_{\rm GAS}$ & 0.18~$\pm$~0.04 & 0.88~$\pm$~0.06 & 218 & 0.51~$\pm$~0.06 & 9\\ 9--11 & & 0.45~$\pm$~0.04 & 1.50~$\pm$~0.07 & 356 & 0.62~$\pm$~0.04 & 15\\ 11--13 & & 0.35~$\pm$~0.04 & 1.35~$\pm$~0.07 & 297 & 0.62~$\pm$~0.05 & 14\\ \hline \end{tabular} \tablefoot {Ordinary least-squares fits of the bisector log~($\Sigma_{\rm SFR}$)~=~$a_{\rm c}~+~b$~log~($X$), where $\Sigma_{\rm SFR}$ is the face-on surface density of the star formation rate in $M_{\odot}$~Gyr$^{-1}$~pc$^{-2}$, $X$~=~$\Sigma_{\rm GAS}$ is the face-on gas surface density in $M_{\odot}$~pc$^{-2}$ and $X$~=~$n_{\rm GAS}$ is the gas volume density in at cm$^{-3}$. $n$ is the number of independent points; $r_{\rm c}$ is the correlation coefficient and t the student-t test. } \end{table}