\begin{table}%t1 %%%\begin{center} \par \caption{\label{tble}Characteristics of a 7 $M_\odot$ star rotating at critical speed.} \begin{tabular}{cccc} %\begin{tabular*}{.5\textwidth}{@{\extracolsep{\fill}}|*{4}{c|}} \hline \hline Parameter & ZAMS & $X_{\rm c}=0.30$ & $X_{\rm c}=0.02$ \\ \hline {\it No rotation} \hskip 4.5pc\strut & & & \\ radius ($R_\odot$) & 4.348 &4.953 & 5.857 \\ quadrupolar moment $J_2$ & 3.370 $\times$ 10$^{-3}\!\!\!$& 2.766 $\times$ 10$^{-3}\!\!\!\!$ & 2.013 $\times$ 10$^{-3}\!\!\!\!$ \\ \hline {\it Uniform rotation} \hskip 3pc\strut & & & \\ quadrupolar moment $J_2$ & 8.411 $\times$ 10$^{-3}\!\!\!$ &7.136 $\times$ 10$^{-3}\!\!\!\!$ & 5.171 $\times$ 10$^{-3}\!\!\!\!$ \\ mean radius $R_0$ & 5.125 &5.803 & 6.852 \\ equatorial radius $R_{\rm E}$ & 5.821 &6.591 & 7.783 \\ polar radius $R_{\rm P}$ & 3.814 &4.329 & 5.133 \\ flattening $R_{\rm E}/R_{\rm P}$ & 1.526 &1.522 & 1.516 \\ \hline {\it Differ. rotation} \quad $\Omega_{\rm c}/\Omega_s=4$ & & & \\ quadrupolar moment $J_2$ & 1.900 $\times$ 10$^{-2}\!\!\!$ &1.550 $\times$ 10$^{-2}\!\!\!\!$ & 1.123 $\times$ 10$^{-2}\!\!\!\!$ \\ mean radius $R_0$ & 5.773 &6.671 & 7.902 \\ equatorial radius $R_{\rm E}$ & 6.557 &7.577 & 8.846 \\ polar radius $R_{\rm P}$ & 4.204 &4.889 &5.846 \\ flattening $R_{\rm E}/R_{\rm P}$ & 1.560 & 1.550 & 1.535 \\ \hline \end{tabular} \tablefoot{$J_2$ is the quadrupolar moment defined in Eq.~(\ref{expansion}). $R_{\rm E}$, $R_{\rm P}$ and $R_0$ are respectively the equatorial, polar and mean radius. Taking the quadrupolar moment into account increases the flattening $R_{\rm E}/R_{\rm P}$ of the stellar surface beyond the value 1.50 of the Roche model, and even more so when the rotation is non-uniform (with the profile of Eq. (\ref{rot-profile})); this is illustrated here with a center-to-surface contrast of~4. In the ``no rotation'' case, the non rotating model was used as reference, while uniform rotation ($h(x)=1$) was assumed when solving the Poisson Eq.~(\ref{diff-eq}).} \end{table}