\begin{table}%t6 \par \caption{\label{t-ccf}The time lag and CCF coefficient for the continuum and H$\beta,\alpha$ line (total line and parts) using ZDCF method.} \small%%\centering \par \begin{tabular}{cccccc} \hline\hline\noalign{\smallskip} Pair I& Pair II &Lag (ZDCF) & ZDCF & Lag (centroid) & 90\% Max$_{\rm ZDCF}$ \\ & & (days) & & (days) & \\ \hline \noalign{\smallskip} $F_{\rm cnt}$& $F$(H$\beta)_{\rm tot}$& $\rm 96^{+28}_{-47}$ & $\rm 0.92^{+0.02}_{-0.02}$ & $\rm 93^{+20}_{-18}$ &0.83\\ $F_{\rm cnt}$&$F$(H$\beta)_{\rm blue}$& $\rm 96^{+47}_{-28}$ & $\rm 0.92^{+0.02}_{-0.02}$ & $\rm 71^{+34}_{-26}$ &0.83\\ $F_{\rm cnt}$&$F$(H$\beta)_{\rm red}$& $\rm 96^{+47}_{-28}$ & $\rm 0.92^{+0.02}_{-0.02}$ & $\rm 70^{+34}_{-26}$ &0.83\\ $F_{\rm cnt}$&$F$(H$\beta)_{\rm core}$& $\rm 96^{+47}_{-28}$ & $\rm 0.91^{+0.02}_{-0.02}$ & $\rm 72^{+33}_{-26}$&0.82 \\ F(H$\beta$)$_{\rm blue}$&$F$(H$\beta$)$_{\rm red}$& $\rm 6^{+36}_{-6}$ & $\rm 0.96^{+0.01}_{-0.01}$ &$\rm -5^{+28}_{-30}$ &0.87 \\ F(H$\beta$)$_{\rm blue}$&$F$(H$\beta$)$_{\rm core}$& $\rm 6^{+36}_{-6}$ & $\rm 0.94^{+0.01}_{-0.01}$ &$\rm -4^{+28}_{-29}$ &0.85 \\ \noalign{\smallskip} $F_{\rm cnt}$&$F$(H$\alpha)_{\rm tot}$& $\rm 24^{+7}_{-5}$ & $\rm 0.90^{+0.05}_{-0.07}$ & $\rm 127^{+18}_{-18}$ & 0.81 \\ & && \\ & &($\rm 151^{+20}_{-9}$)& $\rm 0.90(^{+0.05}_{-0.06}$) \\ \noalign{\smallskip} $F_{\rm cnt}$&$F$(H$\alpha)_{\rm blue}$& $\rm 64^{+26}_{-21}$ & $\rm 0.92^{+0.04}_{-0.06}$ & $\rm 76^{+14}_{-13}$ & 0.83\\ & & ($\rm 175^{+25}_{-12}$) & ($\rm 0.90^{+0.05}_{-0.06}$) \\ $F_{\rm cnt}$&$F$(H$\alpha)_{\rm red}$ & $\rm 23^{+7}_{-5}$ & $\rm 0.87^{+0.07}_{-0.09} $ & $\rm 75^{+14}_{-14}$ &0.79 \\ & &($\rm 175^{+24}_{-12}$) &($\rm 0.81^{+0.08}_{-0.10}$) \\ & && \\ $F_{\rm cnt}$&$F$(H$\alpha)_{\rm core}$& $\rm 64^{+26}_{-21}$ & $\rm 0.90^{+0.06}_{-0.07}$ & $\rm 76^{+14}_{-13}$ &0.81 \\ & & ($\rm 175^{+25}_{-12}$) & ($\rm 0.81^{+0.08}_{-0.10}$) \\ F(H$\alpha$)$_{\rm blue}$&$F$(H$\alpha$)$_{\rm red}$ & $\rm 23^{+7}_{-5}$ & $\rm 0.95^{+0.03}_{-0.04}$ & $\rm 10^{+8}_{-9}$ &0.85 \\ & &($\rm -1^{+1}_{-8}$)& ($\rm 0.93^{+0.02}_{-0.03}$) \\ F(H$\alpha$)$_{\rm blue}$&$F$(H$\alpha$)$_{\rm core}$& $\rm 23^{+7}_{-5}$ & $\rm 0.95^{+0.02}_{-0.03}$ & $\rm 50^{+13}_{-11}$&0.86\\ & &($\rm -1^{+1}_{-8}$)& ($\rm 0.93^{+0.02}_{-0.03}$) \\ \noalign{\smallskip} \hline \end{tabular} \tablefoot{For a ZDCF performed between the continuum and H$\alpha$, two peaks (within the ZDCF errorbars) are very often present, and the value for the second peak is given in brackets. The last two columns give the centroid lag and the 90\% of the ZDCF maximum.} \end{table}