\begin{table}%t1 \caption{\label{table-lineparameters}Observed line parameters of CN$^-$.} \small %\centering \par \begin{tabular}{crllc} \hline \hline\noalign{\smallskip} \multicolumn{1}{c}{} & \multicolumn{1}{c}{$\nu_{\rm 0}$\tablefootmark{a}} & \multicolumn{1}{c}{$\nu_{\rm obs}$} & \multicolumn{1}{c}{$v_{\rm exp}$\tablefootmark{b}} & \multicolumn{1}{c}{$\int$$T_{\rm A}^*$${\rm d}$v} \\ \multicolumn{1}{c}{Transition} & \multicolumn{1}{c}{(MHz)} & \multicolumn{1}{c}{(MHz)} & \multicolumn{1}{c}{(km s$^{-1}$)} & \multicolumn{1}{c}{(K~km~s$^{-1}$)} \\ \hline\noalign{\smallskip} $J$ = 1--0 & 112 264.8 & 112 264.8\tablefootmark{c} & 14.5\tablefootmark{c} & $\sim$0.07(3)\tablefootmark{d}\\ $J$ = 2--1 & 224 525.1 & 224 525.4(5) & 14.5\tablefootmark{c} & 0.23(7)\tablefootmark{e} \\ $J$ = 3--2 & 336 776.4 & 336 777.0(12) & 15.0(10) & 0.13(2) \\ \hline \end{tabular} \tablefoot{Number in parentheses are 1$\sigma$ uncertainties in units of the last digits. \tablefoottext{a}{Frequencies derived from the rotational constants reported by \citet{ama08}.} \tablefoottext{b}{$v_{\rm exp}$ is the half width at zero level.} \tablefoottext{c}{Fixed value.} \tablefoottext{d}{Highly uncertain estimate. Line severely blended with a strong C$_6$H~line.} \tablefoottext{e}{Line blended with a SiC$_2$~$\nu_3=2$~line.}} \end{table}