\begin{table}%t1 \caption{\label{tab:runs}Summary of the runs with varying $\Pm$. } \small%\centering \par \begin{tabular}{cccrccccccccc} \hline\hline \noalign{\smallskip} Run & Grid & $\Ma$ & $\Pm$ & $\Rm$ & $\tilde\lambda$ & $\epsilon_{\rm f}$ & $k_{\rm f}^{(\omega)}$/$\kef$ & $\tilde\brms$ & $\tilde{\mean{B}}_x$ & $\tilde{\mean{B}}_y$ & $\tilde{\mean{B}}$ & $bc$ \\ \noalign{\smallskip}\hline \noalign{\smallskip} VF1 & 128$^3$ & 0.049 & 0.05 & 0.78& $-$0.027 & $-$0.070 & 1.63 & $-$ & $-$ & $-$ & $-$ & $VF$ \\ VF2 & 128$^3$ & 0.034 & 0.10 & 1.1 & 0.013 & $-$0.073 & 1.58 & 1.04 & 0.14 & 0.99 & 1.00 & $VF$ \\ VF3 & 128$^3$ & 0.041 & 0.17 & 2.2 & 0.030 & $-$0.067 & 1.58 & 2.04 & 0.19 & 1.98 & 1.99 & $VF$ \\ % vf128a6 {\bf VF4} & 128$^3$ & 0.046 & 0.25 & {\bf 3.7} & 0.036 & $-$0.066 & 1.60 & 2.28 & 0.22 & 2.18 & 2.18 & $VF$ \\ % vf128a3 VF5 & 128$^3$ & 0.046 & 0.50 & 7.4 & 0.042 & $-$0.066 & 1.60 & 2.02 & 0.19 & 1.85 & 1.85 & $VF$ \\ % vf128a2 VF6 & 128$^3$ & 0.044 & 1.00 & 14 & 0.046 & $-$0.068 & 1.63 & 1.94 & 0.22 & 1.65 & 1.66 & $VF$ \\ % vf128a1 {\bf VF7}& 128$^3$ & 0.042 & 2.50 & {\bf 34} & 0.038 & $-$0.068 & 1.60 & 2.06 & 0.22 & 1.62 & 1.63 & $VF$ \\ % vf128a VF8 & 256$^3$ & 0.040 & 5.00 & 63 & 0.032 & $-$0.069 & 1.63 & 2.13 & 0.20 & 1.57 & 1.58 & $VF$ \\ % vf256a VF9 & 256$^3$ & 0.039 & 10.00 & 122 & 0.047 & $-$0.062 & 1.64 & 2.09 & 0.20 & 1.31 & 1.32 & $VF$ \\ % vf256a1 {\bf VF10}& 512$^3$ & 0.035 & 20.00 & {\bf 222}& 0.071 & $-$0.067 & 1.68 & 2.14 & 0.21 & 1.09 & 1.11 & $VF$ \\ % vf512a \noalign{\smallskip} PC1 & 128$^3$ & 0.045 & 0.25 & 3.6 & $-$0.019 & $-$0.065 & 1.61 & $-$ & $-$ & $-$ & $-$ & $PC$ \\ % pc128a3 {\bf PC2}& 128$^3$ & 0.034 & 0.50 & {\bf 5.4}& 0.011 & $-$0.072 & 1.57 & 1.08 & 0.14 & 0.92 & 0.93 & $PC$ \\ % pc128a2 PC3 & 128$^3$ & 0.035 & 0.67 & 7.5 & 0.016 & $-$0.072 & 1.58 & 1.67 & 0.20 & 1.49 & 1.50 & $PC$ \\ % pc128a4 PC4 & 128$^3$ & 0.040 & 1.00 & 13 & 0.021 & $-$0.076 & 1.58 & 2.44 & 0.26 & 2.23 & 2.23 & $PC$ \\ % pc128a1 {\bf PC5}& 128$^3$ & 0.040 & 2.50 & {\bf 32} & 0.028 & $-$0.072 & 1.58 & 3.22 & 0.31 & 2.90 & 2.90 & $PC$ \\ % pc128a PC6 & 256$^3$ & 0.038 & 5.00 & 61 & 0.027 & $-$0.062 & 1.62 & 3.05 & 0.33 & 2.55 & 2.56 & $PC$ \\ % pc256a PC7 & 256$^3$ & 0.035 & 10.00& 112 & 0.049 & $-$0.065 & 1.63 & 2.29 & 0.22 & 1.53 & 1.55 & $PC$ \\ % pc256a1 {\bf PC8}& 384$^3$ & 0.037 & 14.29& {\bf 168}& 0.057 & $-$0.056 & 1.65 & 1.83 & 0.17 & 0.95 & 0.96 & $PC$ \\ % pc384a PC9 & 512$^3$ & 0.038 & 20.00 & 239 & 0.064 &$-$0.054 & 1.64 & 1.62 & 0.16 & 0.74 & 0.76 & $PC$ \\ % pc512a \hline \end{tabular} \tablefoot{$\tilde\lambda$, $\epsilon_{\rm f}$, and $\kef^{(\omega)}$ are given for the kinematic stage whereas all the other numbers are given for the saturated state of the dynamo. The last column specifies the vertical boundary condition for the magnetic field. In all runs, $\Co\approx0.8$, $\Sh\approx-0.4$, $\Rey\approx12$, and $\Pra\approx0.7$. The adiabatic sound speed squared varies in the range $\cst/(gd)=0.33{-}1.38$ in the domain. Six of the runs are discussed in particular detail, so we have marked them here in boldface and have also highlighted the corresponding values of $\Rm$. } \end{table}