\begin{table}%t2 \caption{\label{tab:runs2}Summary of the runs with varying $\Co$ and $\Sh$.} \small%\centering \par \begin{tabular}{ccccccc} \hline\hline \noalign{\smallskip} Run & Grid & $\Co$ & $\tilde\lambda$ & $\epsilon_{\rm f}$ & $k_{\rm f}^{(\omega)}/\kef$ & $bc$ \\ \noalign{\smallskip}\hline\noalign{\smallskip} VF11 & 128$^3$ & 0.07 & 0.000 & $-$0.014 & 1.29 & $VF$ \\ VF12 & 128$^3$ & 0.16 & 0.006 & $-$0.022 & 1.40 & $VF$ \\ VF13 & 128$^3$ & 0.34 & 0.023 & $-$0.041 & 1.52 & $VF$ \\ VF14 & 128$^3$ & 0.63 & 0.038 & $-$0.068 & 1.60 & $VF$ \\ VF15 & 128$^3$ & 1.36 & 0.054 & $-$0.097 & 1.76 & $VF$ \\ \noalign{\smallskip} PC9 & 128$^3$ & 0.07 &$-$0.008 & $-$0.012 & 1.30 & $PC$ \\ PC10 & 128$^3$ & 0.16 & 0.003 & $-$0.022 & 1.41 & $PC$ \\ PC11 & 128$^3$ & 0.38 & 0.014 & $-$0.042 & 1.50 & $PC$ \\ PC12 & 128$^3$ & 0.75 & 0.028 & $-$0.072 & 1.58 & $PC$ \\ PC13 & 128$^3$ & 1.55 & 0.034 & $-$0.098 & 1.74 & $PC$ \\ \hline \end{tabular} \tablefoot{Here ${\rm Ma}\approx0.045$, $\Rm\approx35$, $\Pm=2.5$, and $\Sh=-\onehalf\Co$ (i.e.\ $S=-\Omega$) in all runs. All numbers are given for the kinematic state.} \end{table}