\begin{table}%t13 %\centering \par \caption{\label{tab_gf_kr}Comparison of the weighted oscillator strength $gf$ between the AS and other calculations for Kr$^{26+}$.} \par \begin{tabular}{cccccc} \hline\hline\noalign{\smallskip} $i-j$ & \multicolumn{2}{c}{AS} & {\rm MCDF\tablefootmark{a}} & {\rm RFG00\tablefootmark{b}} & {\rm ZSC87}\tablefootmark{c} \\ & $gf_L$ &$gf_V/gf_L$ & & & \\ \hline\noalign{\smallskip} 1--3 & 1.34$^{-1}$$^d$ & 0.83 & 1.34$^{-1}$ & & 1.34$^{-1}$ \\ 1--7 & 7.86$^{-2}$ & 0.96 & 8.45$^{-2}$ & & 8.45$^{-2}$ \\ 1--17 & 4.45$^{-3}$ & 0.96 & 6.41$^{-3}$ & 7.79$^{-3}$ & 6.00$^{-3}$ \\ 1--23 & 1.53$^{+0}$ & 1.00 & 1.55$^{+0}$ & 1.54$^{+0}$ & 1.55$^{+0}$ \\ 1--27 & 1.90$^{+0}$ & 1.00 & 1.93$^{+0}$ & 1.94$^{+0}$ & 2.09$^{+0}$ \\ 1--31 & 8.90$^{-2}$ & 1.01 & 8.97$^{-2}$ & 8.75$^{-2}$ & 9.70$^{-2}$ \\ 1--33 & 3.12$^{-1}$ & 1.06 & 3.05$^{-1}$ & 3.05$^{-1}$ & 3.78$^{-1}$ \\ 1--39 & 2.38$^{-2}$ & 0.69 & 2.48$^{-2}$ & 2.47$^{-2}$ & 2.30$^{-2}$ \\ 1--47 & 2.44$^{-3}$ & 0.93 & 3.26$^{-3}$ & & 3.90$^{-2}$ \\ 1--54 & 6.88$^{-2}$ & 0.95 & 7.94$^{-2}$ & 6.80$^{-2}$ & 5.00$^{-3}$ \\ 1--55 & 4.20$^{-1}$ & 0.97 & 4.29$^{-1}$ & 4.34$^{-2}$ & 4.12$^{-1}$ \\ 1--71 & 3.15$^{-1}$ & 0.99 & 3.38$^{-1}$ & 3.30$^{-1}$ & 3.11$^{-1}$ \\ 1--79 & 2.19$^{-2}$ & 0.69 & 2.97$^{-2}$ & 3.33$^{-2}$ & \\ 1--81 & 2.15$^{-2}$ & 0.98 & 1.77$^{-2}$ & 1.30$^{-2}$ & \\ 1--83 & 1.17$^{-1}$ & 0.96 & 1.20$^{-1}$ & 1.17$^{-1}$ & \\ 1--97 & 2.03$^{-1}$ & 0.95 & 2.24$^{-1}$ & 2.33$^{-1}$ & \\ 1--123 & 1.58$^{-3}$ & 0.91 & 2.50$^{-3}$ & & \\ 1--131 & 1.11$^{-1}$ & 0.99 & 1.31$^{-1}$ & 1.37$^{-1}$ & \\ \hline \end{tabular} \tablefoot{ Index number corresponds to that in Table~\ref{tab_energy_kr}. \tablefoottext{a}{Corresponds to the work of %Griffin et~al. ( \citet{GBM08}.} \tablefoottext{b}{RFG00 refers to the calculation of %Rice et~al. ( \citet{RFG00}.} \tablefoottext{c}{ZSC87 refers to the calculation of %Zhang et~al. ( \citet{ZSC87}.} \tablefoottext{d}{$x^y$ denotes $x\times10^y$.}} \end{table}