\begin{table}%t3 \caption{\label{tab3}Correlation coefficients between the 4 quantities based on the tilt angle and the length, $L$, of the next cycle.} %\centerline {\begin{tabular}{c c c c c c} % centered columns (7 columns) \hline\hline % inserts double horizontal lines & \multicolumn{2}{c}{Mount Wilson} & \multicolumn{2}{c}{Kodaikanal} \\ %\hline % inserts single horizontal line & $r_{\rm c}$ & $P$ & $r_{\rm c}$ & $P$ \\ \hline $\langle\alpha\rangle$ & $-$0.88 & 0.05 & $-$0.32 & 0.48\\ $\langle\alpha_{\omega}\rangle$ & $-$0.77 & 0.13 & $-$0.57 & 0.18 \\ \hline $\langle\alpha\rangle/\langle\lambda\rangle$ & $-$0.46 & 0.30 & $-$0.37 & 0.41 \\ $\langle\alpha_{\omega}\rangle/\langle\lambda\rangle$ & $-$0.67 & 0.10 & $-$0.61 & 0.15 \\ \hline \end{tabular}} \medskip \tablefoot{Correlation coefficients are represented by $r_{\rm c}$ and the probability that the correlation is due to chance by $P$ for both the MW and KK data sets.} \end{table}