\begin{table}%t4 \caption{\label{tab4}Correlation coefficients between expressions containing $\alpha$ of cycle $i$ and the strength or maximum amplitude of cycle $i+1$.} %\centerline { \begin{tabular}{c c c c c} % centered columns (7 columns) \hline\hline \noalign{\smallskip} \multicolumn{2}{c}{Mount Wilson} & \multicolumn{2}{c}{Kodaikanal} \\ & $r_{\rm c}$ & $P$ & $r_{\rm c}$ & $P$ \\ \hline\noalign{\smallskip} $\left(\frac{\langle\alpha_{w}\rangle}{\langle\lambda\rangle}S\right)_{i}$ vs. $S_{i+1}$ & $0.65$ & 0.11 & $0.70$ & 0.08 \\ $\max\left(\overline{S} \overline{\alpha_{a,\lambda}}\right)+11~\rm yr$~vs. $\max\left(\overline{S}\right)$ & $0.79$ & 0.03 & $0.78$ & 0.04 \\ \hline \end{tabular}} \medskip \tablefoot{Correlation coefficients are represented by $r_{\rm c}$ and the probability that the correlation is due to chance by $P$ for both the MW and KK data sets. The two rows correspond to different expressions explained in the main text.} \vspace{-3mm}\end{table}