\begin{table}%t2 \caption{\label{table:3}Parameter values for calculation of grain lifetime and the power of their dependence on the derived lifetime.} %\centering \par \begin{tabular}{c c c c c c c c} \hline\hline\noalign{\smallskip} $S_{\rm rms}$ \T &$\kappa_{\rm d}(250)$&$T_{\rm d}$&$A$\tablefootmark{\ast} &$\tau_1$&$v_{\infty}$& $L_4$\\ mJy & $\rm m^2~kg^{-1}$ & K &$10^{-10}$ & &$\rm km~s^{-1}$&$10^4~L_{\odot}$\\ \hline \par 9.6 \T & 0.6517 & 30 &$6.5$ & fit & 10 & 0.3\\ 1& --1& --1\tablefootmark{\dagger} & 1 & 1 & 1 & 0.5 \\ \hline \end{tabular} \tablefoot{E.g., $t_{\rm g}\propto 1/T_{\rm d}$. \tablefoottext{\ast}{The units of $A$ are $M_{\odot}$~yr$^{-1}$/(km~s$^{-1}$). \tablefoottext{\dagger}{In the Rayleigh-Jeans limit; which is a bad approximation for $T_{\rm d}\lesssim 20\;\rm K$.}}} \end{table}