\begin{table}%T1 \caption{\label{Halo}\label{tab1}Halo model results using the Lockman-SWIRE $w(\theta)$.} \vspace{-2mm} \small%\centering \par \begin{tabular}{ccccccccc} \hline\hline \noalign{\smallskip} Band & Flux density & $N_{\rm gal}$ & $\langle z \rangle$ & $\log [M_{\rm min}/M_{\odot}]$ & $\log [M_{\rm sat}/M_{\odot}]$ & $\alpha_{\rm s}$ & $\langle b \rangle_z$ & $f_{\rm s}$ \\ \hline \noalign{\smallskip} 250~$\mu$m & $S \ga 30$~mJy & 8154 & $2.1^{+0.4}_{-0.7}$ & $12.6^{+0.3}_{-0.6}$ & $13.1^{+0.3}_{-0.5}$ & $1.3\pm0.4$ & $2.9 \pm 0.4$& $0.14 \pm 0.08$ \\ 350~$\mu$m & $S \ga 30$~mJy & 4899 & $2.3^{+0.4}_{-0.7}$ & $12.9^{+0.4}_{-0.6}$ & $>$$13.1$ & $<$$1.8$ & $3.2 \pm 0.5$ & $<$$0.20$\\ 500~$\mu$m & $S \ga 30$~mJy & 1680 & $2.6^{+0.3}_{-0.7}$ & $13.5^{+0.3}_{-1.0}$ & $>$$13.5$ & $<$$1.6$ & $3.6 \pm 0.8$& $<$$0.24$ \\ Combined & $S_{\rm 350}/S_{\rm 250} \ga 0.85$ & 3333 & $2.5 \pm 0.4$ & $13.4^{+0.2}_{-0.3}$ & $>$$13.4$ & $<$$1.8$ & $3.4 \pm 0.6$& $<$$0.19$\\ Combined & $S_{\rm 350}/S_{\rm 250} \la 0.85$ & 3194 & $1.7^{+0.5}_{-0.6}$ & $12.8^{+0.3}_{-0.5}$ & $>$$12.9$ & $<$$1.9$ & $2.6 \pm 0.6$ & $<$$0.26$\\ \noalign{\smallskip} \hline \end{tabular} \vspace{-1mm} \tablefoot{See text below Eq.~(2) for definitions of $M_{\rm min}$, $M_{\rm sat}$, $\alpha_{\rm s}$, $\langle b \rangle_z$, and $f_{\rm s}$. The redshift range is an approximate estimate based on the colour$-$colour diagram of the source sample through a comparison to isothermal, modified black-body SEDs with a wide range of dust temperatures and emissivity parameters (see, Fig.~\ref{pz} for an example involving $S_{250}>30$~mJy and for the two colour cuts).}\vspace{-2mm} \end{table}