\begin{table}%t4 \caption{\label{tab:theta}Quasi-periodic decomposition of the resonant angle $\theta = \lambda_\sb - 5\lambda_\sc + \varpi_\sb + 3\varpi_\sc$ for an integration of the orbital solution~S2 over 1~million years.} %\centering \par \begin{tabular}{rrrrrrrrr} \hline \hline \noalign{\smallskip} $j$ & $\nu_j$, deg/yr & $A_j$, deg & $\phi_j$, deg & $\alpha_j$ & $\beta_j$ & $\gamma_j$ \\ \hline 1 & 0.480579 & 53.892 & 26.688 & 0 & 1 & 0 \\ 2 & 4.973316 & 36.043 & --132.474 & 0 & 1 & 1 \\ 3 & 4.492737 & 34.786 & 111.145 & 0 & 0 & 1 \\ 4 & 4.012157 & 21.409 & --5.446 & 0 & --1 & 1 \\ 5 & 0.961158 & 21.399 & --36.372 & 0 & 2 & 0 \\ 6 & --512.651573 & 17.254 & 127.883 & --5 & 3 & 0 \\ 7 & --513.612733 & 16.069 & --104.463 & --5 & 1 & 0 \\ 8 & 5.934475 & 16.268 & --79.250 & 0 & 3 & 1 \\ 9 & 6.415054 & 16.795 & 37.274 & 0 & 4 & 1 \\ 10 & --522.430683 & 15.118 & 85.394 & --5 & --8 & --1 \\ 11 & --512.170994 & 12.658 & 64.316 & --5 & 4 & 0 \\ 12 & 5.453895 & 12.716 & --16.043 & 0 & 2 & 1 \\ 13 & --513.132153 & 12.432 & 11.782 & --5 & 2 & 0 \\ 14 & --503.833622 & 11.911 & 117.837 & --5 & 12 & 1 \\ 15 & 8.817951 & 11.908 & 79.987 & 0 & 9 & 1 \\ 16 & 205.156746 & 12.090 & 25.645 & 2 & --1 & 0 \\ 17 & --521.950104 & 10.953 & 21.911 & --5 & --7 & --1 \\ 18 & --522.911263 & 10.799 & 149.019 & --5 & --9 & --1 \\ 19 & --505.755940 & 11.882 & --168.212 & --5 & 8 & 1 \\ 20 & --504.314203 & 9.299 & --178.391 & --5 & 11 & 1 \\ 21 & --503.353041 & 8.914 & 53.782 & --5 & 13 & 1 \\ 22 & --505.275360 & 10.486 & 127.883 & --5 & 9 & 1 \\ 23 & 102.818662 & 10.628 & 116.261 & 1 & 0 & 0 \\ 24 & 1018.888092 & 9.462 & --112.965 & 10 & --10 & --1 \\ 25 & 6.895632 & 10.657 & --25.001 & 0 & 5 & 1 \\ 26 & 307.975409 & 8.924 & --128.711 & 3 & --1 & 0 \\ 27 & 3.531578 & 8.135 & --122.054 & 0 & --2 & 1 \\ 28 & 7.376215 & 8.880 & 88.862 & 0 & 6 & 1 \\ 29 & 1025.783728 & 7.756 & --49.947 & 10 & --5 & 0 \\ 30 & --411.274650 & 7.376 & 165.597 & --4 & 0 & 0 \\ \hline \end{tabular} \tablefoot {The decomposition is given in Eq.~(\ref{eq:decomp1}) and each frequency~$\nu_j$ is expressed as a combination of the fundamental frequencies as in (Eq.~(\ref{eq:decomp5})). For the sake of brievity, we only give the first 30~terms.} \end{table}